Improving the joint estimation of CO2 and surface carbon fluxes using a constrained ensemble Kalman filter in COLA (v1.0)

被引:15
作者
Liu, Zhiqiang [1 ,2 ]
Zeng, Ning [1 ,3 ,4 ]
Liu, Yun [5 ,6 ]
Kalnay, Eugenia [3 ]
Asrar, Ghassem [7 ]
Wu, Bo [1 ]
Cai, Qixiang [1 ]
Liu, Di [8 ]
Han, Pengfei [1 ,9 ]
机构
[1] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing, Peoples R China
[3] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA
[4] Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA
[5] Texas A&M Univ, Int Lab High Resolut Earth Syst Model & Predict i, College Stn, TX USA
[6] Texas A&M Univ, Dept Oceanog, College Stn, TX 77843 USA
[7] Univ Space Res Assoc, Columbia, MD USA
[8] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Beijing, Peoples R China
[9] Chinese Acad Sci, Carbon Neutral Res Ctr, Inst Atmospher Phys, Beijing, Peoples R China
关键词
DATA ASSIMILATION; MODEL; OCO-2; ALGORITHM; CYCLE;
D O I
10.5194/gmd-15-5511-2022
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Atmospheric inversion of carbon dioxide (CO2) measurements to better understand carbon sources and sinks has made great progress over the last 2 decades. However, most of the studies, including a four-dimensional variational ensemble Kalman filter and Bayesian synthesis approaches, directly obtain only fluxes, while CO2 concentration is derived with the forward model as part of a post-analysis. Kang et al. (2012) used the local ensemble transform Kalman filter (LETKF), which updates the CO2, surface carbon flux (SCF), and meteorology fields simultaneously. Following this track, a system with a short assimilation window and a long observation window was developed (Liu et al., 2019). However, this data assimilation system faces the challenge of maintaining carbon mass conservation. To overcome this shortcoming, here we apply a constrained ensemble Kalman filter (CEnKF) approach to ensure the conservation of global CO2 mass. After a standard LETKF procedure, an additional assimilation is used to adjust CO2 at each model grid point and to ensure the consistency between the analysis and the first guess of the global CO2 mass. Compared to an observing system simulation experiment without mass conservation, the CEnKF significantly reduces the annual global SCF bias from similar to 0.2 to less than 0.06 Gt and slightly improves the seasonal and annual performance over tropical and southern extratropical regions. We show that this system can accurately track the spatial distribution of annual mean SCF. And the system reduces the seasonal flux root mean square error from a priori to analysis by 48 %-90 %, depending on the continental region. Moreover, the 2015-2016 El Nino impact is well captured with anomalies mainly in the tropics.
引用
收藏
页码:5511 / 5528
页数:18
相关论文
共 58 条
  • [1] An adaptive covariance inflation error correction algorithm for ensemble filters
    Anderson, Jeffrey L.
    [J]. TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2007, 59 (02) : 210 - 224
  • [2] [Anonymous], GEOS CHEM GEOS CHEM
  • [3] Variational data assimilation for atmospheric CO2
    Baker, David F.
    Doney, Scott C.
    Schimel, David S.
    [J]. TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2006, 58 (05): : 359 - 365
  • [4] TransCom 3 inversion intercomparison:: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988-2003 -: art. no. GB1002
    Baker, DF
    Law, RM
    Gurney, KR
    Rayner, P
    Peylin, P
    Denning, AS
    Bousquet, P
    Bruhwiler, L
    Chen, YH
    Ciais, P
    Fung, IY
    Heimann, M
    John, J
    Maki, T
    Maksyutov, S
    Masarie, K
    Prather, M
    Pak, B
    Taguchi, S
    Zhu, Z
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2006, 20 (01)
  • [5] Global CO2 fluxes estimated from GOSAT retrievals of total column CO2
    Basu, S.
    Guerlet, S.
    Butz, A.
    Houweling, S.
    Hasekamp, O.
    Aben, I.
    Krummel, P.
    Steele, P.
    Langenfelds, R.
    Torn, M.
    Biraud, S.
    Stephens, B.
    Andrews, A.
    Worthy, D.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (17) : 8695 - 8717
  • [6] The impact of transport model differences on CO2 surface flux estimates from OCO-2 retrievals of column average CO2
    Basu, Sourish
    Baker, David F.
    Chevallier, Frederic
    Patra, Prabir K.
    Liu, Junjie
    Miller, John B.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (10) : 7189 - 7215
  • [7] An improved Kalman Smoother for atmospheric inversions
    Bruhwiler, LMP
    Michalak, AM
    Peters, W
    Baker, DF
    Tans, P
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 : 2691 - 2702
  • [8] Characterization of Regional-Scale CO2 Transport Uncertainties in an Ensemble with Flow-Dependent Transport Errors
    Chen, Hans W.
    Zhang, Fuqing
    Lauvaux, Thomas
    Davis, Kenneth J.
    Feng, Sha
    Butler, Martha P.
    Alley, Richard B.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (07) : 4049 - 4058
  • [9] CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements
    Chevallier, F.
    Ciais, P.
    Conway, T. J.
    Aalto, T.
    Anderson, B. E.
    Bousquet, P.
    Brunke, E. G.
    Ciattaglia, L.
    Esaki, Y.
    Froehlich, M.
    Gomez, A.
    Gomez-Pelaez, A. J.
    Haszpra, L.
    Krummel, P. B.
    Langenfelds, R. L.
    Leuenberger, M.
    Machida, T.
    Maignan, F.
    Matsueda, H.
    Morgui, J. A.
    Mukai, H.
    Nakazawa, T.
    Peylin, P.
    Ramonet, M.
    Rivier, L.
    Sawa, Y.
    Schmidt, M.
    Steele, L. P.
    Vay, S. A.
    Vermeulen, A. T.
    Wofsy, S.
    Worthy, D.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
  • [10] On the impact of transport model errors for the estimation of CO2 surface fluxes from GOSAT observations
    Chevallier, Frederic
    Feng, Liang
    Boesch, Hartmut
    Palmer, Paul I.
    Rayner, Peter J.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2010, 37