F-NET: FUSION NEURAL NETWORK FOR VEHICLE TRAJECTORY PREDICTION IN AUTONOMOUS DRIVING

被引:7
作者
Wang, Jue [1 ,2 ]
Wang, Ping [1 ,4 ]
Zhang, Chao [1 ]
Su, Kuifeng [2 ]
Li, Jun [3 ]
机构
[1] Peking Univ, Beijing, Peoples R China
[2] Tencent Technol Beijing Co Ltd, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
[4] Minist Educ, Key Lab High Confidence Software Technol PKU, Beijing, Peoples R China
来源
2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021) | 2021年
基金
国家重点研发计划;
关键词
Autonomous driving; trajectory prediction; fusion neural network;
D O I
10.1109/ICASSP39728.2021.9413881
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Recent research has been remarkable in recurrent neural networks (RNNs) on sequence-to-sequence problems for image caption, and promising in convolutional neural networks (CNNs) on spatial analysis problems for image detection and sematic segmentation problems. In this paper, based on recurrent neural networks and convolutional neural networks, we propose a fusion neural network architecture named F-Net to deal with vehicle trajectory prediction on highway and urban scenarios in autonomous driving applications. The novelty of the proposed method is the attention mechanism that affects effectively in the progress of both RNN and CNN feature extraction. Besides, our sufficient usage of raw sensor data protects scene texture information of environment and interaction among surrounding vehicles. Experimental results on the nuScene dataset show that our proposed method outperforms the state-of-the-art methods.
引用
收藏
页码:4095 / 4099
页数:5
相关论文
共 15 条
[1]   nuScenes: A multimodal dataset for autonomous driving [J].
Caesar, Holger ;
Bankiti, Varun ;
Lang, Alex H. ;
Vora, Sourabh ;
Liong, Venice Erin ;
Xu, Qiang ;
Krishnan, Anush ;
Pan, Yu ;
Baldan, Giancarlo ;
Beijbom, Oscar .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11618-11628
[2]  
Chou Fang-Chieh, 2019, ABS190608469 CORR
[3]  
Chung J., 2014, ARXIV
[4]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[5]   Modeling Vehicle Interactions via Modified LSTM Models for Trajectory Prediction [J].
Dai, Shengzhe ;
Li, Li ;
Li, Zhiheng .
IEEE ACCESS, 2019, 7 :38287-38296
[6]   Convolutional Social Pooling for Vehicle Trajectory Prediction [J].
Deo, Nachiket ;
Trivedi, Mohan M. .
PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, :1549-1557
[7]   Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks [J].
Gupta, Agrim ;
Johnson, Justin ;
Li Fei-Fei ;
Savarese, Silvio ;
Alahi, Alexandre .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :2255-2264
[8]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[9]   Searching for MobileNetV3 [J].
Howard, Andrew ;
Sandler, Mark ;
Chu, Grace ;
Chen, Liang-Chieh ;
Chen, Bo ;
Tan, Mingxing ;
Wang, Weijun ;
Zhu, Yukun ;
Pang, Ruoming ;
Vasudevan, Vijay ;
Le, Quoc V. ;
Adam, Hartwig .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :1314-1324
[10]   The ApolloScape Dataset for Autonomous Driving [J].
Huang, Xinyu ;
Cheng, Xinjing ;
Geng, Qichuan ;
Cao, Binbin ;
Zhou, Dingfu ;
Wang, Peng ;
Lin, Yuanqing ;
Yang, Ruigang .
PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, :1067-1073