Deep Learning Based Robust Precoder Design for Massive MIMO Downlink

被引:0
作者
Shi, Junchao [1 ]
Wang, Wenjin [1 ]
Yi, Xinping [2 ]
Gao, Xiqi [1 ]
Li, Geoffrey Ye [3 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[2] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3BX, Merseyside, England
[3] Imperial Coll London, Dept Elect & Elect Engineeing, London, England
来源
IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021) | 2021年
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
CHANNEL ESTIMATION; TRANSMISSION; NETWORKS; MODEL;
D O I
10.1109/ICC42927.2021.9500402
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this paper, we consider massive multiple-input multiple-output (MIMO) communication systems with a uniform planar array (UPA) at the base station (BS) and investigate the downlink precoding with imperfect channel state information (CSI). By exploiting both instantaneous and statistical CSI, we aim to design precoding vectors to maximize the ergodic rate subject to a total transmit power constraint. By maximizing an upper bound of the ergodic rate instead, we leverage the corresponding Lagrangian formulation and identify the structural characteristics of the optimal precoder as the solution to a generalized eigenvalue problem. As such, the high-dimensional precoder design problem turns into a low-dimensional power control problem. The Lagrange multipliers play a crucial role in determining both precoder directions and power parameters, yet are challenging to be solved directly. To figure out the Lagrange multipliers, we develop a deep learning approach underpinned by a properly designed neural network that learns directly from CSI. With the offline pre-trained neural network, the online computational complexity of precoding is substantially reduced compared with the existing iterative algorithm while maintaining nearly the same performance.
引用
收藏
页数:6
相关论文
共 33 条
[1]  
[Anonymous], 2019, 38211 3GPP TS
[2]   Optimal Multiuser Transmit Beamforming: A Difficult Problem with a Simple Solution Structure [J].
Bjornson, Emil ;
Bengtsson, Mats ;
Ottersten, Bjorn .
IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (04) :142-148
[3]  
Boyd S., 2009, Convex Optimization, DOI DOI 10.1017/CBO9780511804441
[4]   Multiuser MIMO Achievable Rates With Downlink Training and Channel State Feedback [J].
Caire, Giuseppe ;
Jindal, Nihar ;
Kobayashi, Mari ;
Ravindran, Niranjay .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (06) :2845-2866
[5]   Bounds on Eigenvalues of a Spatial Correlation Matrix [J].
Choi, Junil ;
Love, David J. .
IEEE COMMUNICATIONS LETTERS, 2014, 18 (08) :1391-1394
[6]   Weighted Sum-Rate Maximization using Weighted MMSE for MIMO-BC Beamforming Design [J].
Christensen, Soren Skovgaard ;
Agarwal, Rajiv ;
de Carvalho, Elisabeth ;
Cioffi, John M. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2008, 7 (12) :4792-4799
[7]   Rate Splitting for MIMO Wireless Networks: A Promising PHY-Layer Strategy for LTE Evolution [J].
Clerckx, Bruno ;
Joudeh, Hamdi ;
Hao, Chenxi ;
Dai, Mingbo ;
Rassouli, Borzoo .
IEEE COMMUNICATIONS MAGAZINE, 2016, 54 (05) :98-105
[8]  
Gao X., 2020, ARXIV200404331
[9]   Statistical Eigenmode Transmission Over Jointly Correlated MIMO Channels [J].
Gao, Xiqi ;
Jiang, Bin ;
Li, Xiao ;
Gershman, Alex B. ;
McKay, Matthew R. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (08) :3735-3750
[10]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1