Minimal models for actions of amenable groups

被引:4
作者
Frej, Bartosz [1 ]
Huczek, Dawid [1 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland
关键词
Topologicalmodel; dynamical system; group action; amenable group; invariant measure; Choquet simplex; Borel isomorphism;
D O I
10.4171/GGD/408
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that on a metrizable, compact, zero-dimensional space every free action of an amenable group is measurably isomorphic to a minimal G-action with the same, i.e. affinely homeomorphic, simplex of measures.
引用
收藏
页码:567 / 583
页数:17
相关论文
共 6 条
[1]   Minimal models for noninvertible and not uniquely ergodic systems [J].
Downarowicz, Tomasz .
ISRAEL JOURNAL OF MATHEMATICS, 2006, 156 (1) :93-110
[2]   LARGE SYMMETRIC SETS IN AMENABLE GROUPS AND INDIVIDUAL ERGODIC THEOREM [J].
EMERSON, WR .
AMERICAN JOURNAL OF MATHEMATICS, 1974, 96 (02) :242-247
[3]  
Frej B., 2008, C MATH, V110, P461
[4]   ON ALMOST 1-1 EXTENSIONS [J].
FURSTENBERG, H ;
WEISS, B .
ISRAEL JOURNAL OF MATHEMATICS, 1989, 65 (03) :311-322
[5]   Topological realizations of families of ergodic automorphisms, multitowers and orbit equivalence [J].
Kornfeld, Isaac ;
Ormes, Nicholas .
ISRAEL JOURNAL OF MATHEMATICS, 2006, 155 (1) :335-357
[6]   Pointwise theorems for amenable groups [J].
Lindenstrauss, E .
ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 5 :82-90