Cellulose-Based Hybrid Aerogels: Strategies toward Design and Functionality

被引:188
作者
Rahmanian, Vahid [1 ]
Pirzada, Tahira [1 ]
Wang, Siyao [1 ]
Khan, Saad A. [1 ]
机构
[1] North Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA
关键词
cellulose; graphene oxide; hybrid aerogels; metal organic frameworks; nanocellulose; silica; triboelectric nanogenerators; METAL-ORGANIC FRAMEWORKS; POLYSACCHARIDE-BASED AEROGELS; SILICA COMPOSITE AEROGELS; REDUCED GRAPHENE OXIDE; BACTERIAL CELLULOSE; THERMAL INSULATION; CARBOXYMETHYL CELLULOSE; NANOCELLULOSE AEROGELS; NANOCOMPOSITE AEROGELS; MECHANICAL-PROPERTIES;
D O I
10.1002/adma.202102892
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The brittle nature of early aerogels developed from inorganic precursors fueled the discovery of their organic counterparts. Prominent among these organics are cellulose aerogels because of their natural abundance, biocompatibility, sustainable precursors, and tunable properties. The hierarchical structure of cellulose, from polymers to nano/microfibers, further facilitates fabrication of materials across multiple length scales with added applicability. However, the inherent flammability, structural fragility, and low thermal stability have limited their use. Recently developed cellulose-based hybrid aerogels offer strong potential owing to their tunability and enhanced functionality brought about by combining the inherent properties of cellulose with organic and inorganic components. A survey of the historical background and scientific achievements in the design and development of cellulose-based hybrid aerogel materials is encompassed here. The impacts of incorporating organic and inorganic ingredients with cellulose and the corresponding synergistic effects are discussed in terms of their design and functionality. The underlying principles governing the structural integration and functionality enhancement are also analyzed. The latest developments of cellulose-based hybrid aerogels fabricated from nontraditional incipient aerogels, such as fibrous webs, are also explored. Finally, future opportunities that could make these materials achieve even greater impacts through improved scalability, rationally designed synthesis, and multifunctional properties are discussed.
引用
收藏
页数:26
相关论文
共 139 条
[71]   Superhydrophobic cellulose nanofibril/silica fiber/Fe3O4 nanocomposite aerogel for magnetically driven selective oil absorption [J].
Mi, Hao-Yang ;
Li, Heng ;
Jing, Xin ;
Zhang, Qing ;
Feng, Pei-Yong ;
He, Ping ;
Liu, Yuejun .
CELLULOSE, 2020, 27 (15) :8909-8922
[72]   Highly porous composite aerogel based triboelectric nanogenerators for high performance energy generation and versatile self-powered sensing [J].
Mi, Hao-Yang ;
Jing, Xin ;
Cai, Zhiyong ;
Liu, Yuejun ;
Turng, Lih-Sheng ;
Gong, Shaoqin .
NANOSCALE, 2018, 10 (48) :23131-23140
[73]   High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing [J].
Mi, Hao-Yang ;
Jing, Xin ;
Zheng, Qifeng ;
Fang, Liming ;
Huang, Han-Xiong ;
Turng, Lih-Sheng ;
Gong, Shaoqin .
NANO ENERGY, 2018, 48 :327-336
[74]   Highly compressible ultra-light anisotropic cellulose/graphene aerogel fabricated by bidirectional freeze drying for selective oil absorption [J].
Mi, Hao-Yang ;
Jing, Xin ;
Politowicz, Alexander L. ;
Chen, Edward ;
Huang, Han-Xiong ;
Turng, Lih-Sheng .
CARBON, 2018, 132 :199-209
[75]   Superhydrophobic Graphene/Cellulose/Silica Aerogel with Hierarchical Structure as Superabsorbers for High Efficiency Selective Oil Absorption and Recovery [J].
Mi, Hao-Yang ;
Jing, Xin ;
Huang, Han-Xiong ;
Peng, Xiang-Fang ;
Turng, Lih-Sheng .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (05) :1745-1755
[76]   Nanofibrillated cellulose: properties reinvestigated [J].
Naderi, Ali .
CELLULOSE, 2017, 24 (05) :1933-1945
[77]   Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system [J].
Niu, Simiao ;
Zhou, Yu Sheng ;
Wang, Sihong ;
Liu, Ying ;
Lin, Long ;
Bando, Yoshio ;
Wang, Zhong Lin .
NANO ENERGY, 2014, 8 :150-156
[78]   Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry [J].
Nogi, Masaya ;
Yano, Hiroyuki .
ADVANCED MATERIALS, 2008, 20 (10) :1849-+
[79]   A facile approach for preparation of underwater superoleophobicity cellulose/chitosan composite aerogel for oil/water separation [J].
Peng, Huili ;
Wu, Jianning ;
Wang, Yixi ;
Wang, Hao ;
Liu, Zhiyong ;
Shi, Yulin ;
Guo, Xuhong .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2016, 122 (05)
[80]   Bacterial cellulose/graphene oxide aerogels with enhanced dimensional and thermal stability [J].
Pinto, Susana C. ;
Goncalves, Gil ;
Sandoval, Stefania ;
Lopez-Periago, Ana M. ;
Borras, Alejandro ;
Domingo, Concepcion ;
Tobias, Gerard ;
Duarte, Isabel ;
Vicente, Romeu ;
Marques, Paula A. A. P. .
CARBOHYDRATE POLYMERS, 2020, 230