TAMENESS FROM LARGE CARDINAL AXIOMS

被引:41
作者
Boney, Will [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
关键词
Abstract Elementary Classes; tameness; large cardinals; CATEGORICITY; SUCCESSOR;
D O I
10.1017/jsl.2014.30
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that Shelah's Eventual Categoricity Conjecture for successors follows from the existence of class many strongly compact cardinals. This is the first time the consistency of this conjecture has been proven. We do so by showing that every AEC with LS(K) below a strongly compact cardinal kappa is < kappa-tame and applying the categoricity transfer of Grossberg and VanDieren [11]. These techniques also apply to measurable and weakly compact cardinals and we prove similar tameness results under those hypotheses. We isolate a dual property to tameness, called type shortness, and show that it follows similarly from large cardinals.
引用
收藏
页码:1092 / 1119
页数:28
相关论文
共 38 条
[11]  
Ekloff Paul, 2002, ALMOST FREE MODULES
[12]  
Grossberg R., 2012, Uniqueness of limit models in classes with amalgamation
[13]  
Grossberg R., 2002, CONT MATH, P165
[14]   Categoricity from one successor cardinal in tame abstract elementary classes [J].
Grossberg, Rami ;
Vandieren, Monica .
JOURNAL OF MATHEMATICAL LOGIC, 2006, 6 (02) :181-201
[15]   Shelah's categoricity conjecture from a successor for tame abstract elementary classes [J].
Grossberg, Rami ;
Vandieren, Monica .
JOURNAL OF SYMBOLIC LOGIC, 2006, 71 (02) :553-568
[16]   Galois-stability for tame abstract elementary classes [J].
Grossberg, Rami ;
Vandieren, Monica .
JOURNAL OF MATHEMATICAL LOGIC, 2006, 6 (01) :25-48
[17]  
Grossberg Rami, COURSE MODEL T UNPUB, p201X
[18]  
Hart Brad, 1990, ISR J MATH, V70, P210
[19]   Categoricity in homogeneous complete metric spaces [J].
Hirvonen, Asa ;
Hyttinen, Tapani .
ARCHIVE FOR MATHEMATICAL LOGIC, 2009, 48 (3-4) :269-322
[20]   Superstability in simple finitary AECs [J].
Hyttinen, Tapani ;
Kesraelae, Meeri .
FUNDAMENTA MATHEMATICAE, 2007, 195 (03) :221-268