Review of machine learning methods for RNA secondary structure prediction

被引:42
|
作者
Zhao, Qi [1 ]
Zhao, Zheng [2 ]
Fan, Xiaoya [3 ]
Yuan, Zhengwei [4 ]
Mao, Qian [5 ,6 ]
Yao, Yudong [7 ]
机构
[1] Northeastern Univ, Coll Med & Biol Informat Engn, Shenyang, Liaoning, Peoples R China
[2] Dalian Maritime Univ, Sch Informat Sci & Technol, Dalian, Liaoning, Peoples R China
[3] Dalian Univ Technol, Sch Software, Key Lab Ubiquitous Network & Serv Software Liaoni, Dalian, Liaoning, Peoples R China
[4] China Med Univ, Key Lab Hlth Minist Congenital Malformat, Shengjing Hosp, Shenyang, Liaoning, Peoples R China
[5] Liaoning Univ, Coll Light Ind, Shenyang, Liaoning, Peoples R China
[6] Changchun Univ, Key Lab Agroprod Proc Technol, Changchun, Jilin, Peoples R China
[7] Stevens Inst Technol, Dept Elect & Comp Engn, Hoboken, NJ 07030 USA
基金
中国国家自然科学基金;
关键词
CONTEXT-FREE GRAMMARS; THERMODYNAMIC PARAMETERS; SEQUENCE; ALGORITHM; GENOME; MECHANISMS; DATABASE; CLASSIFICATION; PSEUDOBASE; STABILITY;
D O I
10.1371/journal.pcbi.1009291
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Secondary structure plays an important role in determining the function of noncoding RNAs. Hence, identifying RNA secondary structures is of great value to research. Computational prediction is a mainstream approach for predicting RNA secondary structure. Unfortunately, even though new methods have been proposed over the past 40 years, the performance of computational prediction methods has stagnated in the last decade. Recently, with the increasing availability of RNA structure data, new methods based on machine learning (ML) technologies, especially deep learning, have alleviated the issue. In this review, we provide a comprehensive overview of RNA secondary structure prediction methods based on ML technologies and a tabularized summary of the most important methods in this field. The current pending challenges in the field of RNA secondary structure prediction and future trends are also discussed.
引用
收藏
页数:22
相关论文
共 50 条
  • [2] Deep dive into RNA: a systematic literature review on RNA structure prediction using machine learning methods
    Budnik, Michal
    Wawrzyniak, Jakub
    Grala, Lukasz
    Kadzinski, Milosz
    Szostak, Natalia
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (09)
  • [3] A brief review of machine learning methods for RNA methylation sites prediction
    Wang, Hong
    Wang, Shuyu
    Zhang, Yong
    Bi, Shoudong
    Zhu, Xiaolei
    METHODS, 2022, 203 : 399 - 421
  • [4] How to benchmark RNA secondary structure prediction accuracy
    Mathews, David H.
    METHODS, 2019, 162 : 60 - 67
  • [5] The four ingredients of single-sequence RNA secondary structure prediction. A unifying perspective
    Rivas, Elena
    RNA BIOLOGY, 2013, 10 (07) : 1185 - 1196
  • [6] CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction
    Puton, Tomasz
    Kozlowski, Lukasz P.
    Rother, Kristian M.
    Bujnicki, Janusz M.
    NUCLEIC ACIDS RESEARCH, 2013, 41 (07) : 4307 - 4323
  • [7] A sensitivity analysis of RNA folding nearest neighbor parameters identifies a subset of free energy parameters with the greatest impact on RNA secondary structure prediction
    Zuber, Jeffrey
    Sun, Hongying
    Zhang, Xiaoju
    McFadyen, Iain
    Mathews, David H.
    NUCLEIC ACIDS RESEARCH, 2017, 45 (10) : 6168 - 6176
  • [8] A Review of Machine Learning and Algorithmic Methods for Protein Phosphorylation Site Prediction
    Esmaili, Farzaneh
    Pourmirzaei, Mahdi
    Ramazi, Shahin
    Shojaeilangari, Seyedehsamaneh
    Yavari, Elham
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2023, 21 (06) : 1266 - 1285
  • [9] Evaluation of a sophisticated SCFG design for RNA secondary structure prediction
    Nebel, Markus E.
    Scheid, Anika
    THEORY IN BIOSCIENCES, 2011, 130 (04) : 313 - 336
  • [10] Machine Learning Methods for Preterm Birth Prediction: A Review
    Wlodarczyk, Tomasz
    Plotka, Szymon
    Szczepanski, Tomasz
    Rokita, Przemyslaw
    Sochacki-Wojcicka, Nicole
    Wojcicki, Jakub
    Lipa, Michal
    Trzcinski, Tomasz
    ELECTRONICS, 2021, 10 (05) : 1 - 24