Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots

被引:286
作者
Wei, Ke [1 ]
Xu, Zhongjie [1 ,2 ]
Chen, Runze [2 ]
Zheng, Xin [2 ]
Cheng, Xiangai [1 ,2 ]
Jiang, Tian [1 ,2 ,3 ]
机构
[1] Natl Univ Def Technol, Coll Optoelect Sci & Engn, Changsha 410073, Hunan, Peoples R China
[2] Natl Univ Def Technol, State Key Lab High Performance Comp, Changsha 410073, Hunan, Peoples R China
[3] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 10000, Peoples R China
关键词
LIGHT-EMITTING-DIODES; NANOCRYSTALS; EMISSION; LUMINESCENCE; LINEWIDTHS; BRIGHT;
D O I
10.1364/OL.41.003821
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recently, lead halide perovskite quantum dots have been reported with potential for photovoltaic and optoelectronic applications due to their excellent luminescent properties. Herein excitonic photoluminescence (PL) excited by two-photon absorption in perovskite CsPbBr3 quantum dots (QDs) has been studied at a broad temperature range, from 80 to 380 K. Two-photon absorption has been investigated and the absorption coefficient is up to 0.085 cm/GW at room temperature. Moreover, the PL spectrum excited by two-photon absorption shows a linear blue-shift (0.32 meV/K) below the temperature of 220 K. However, for higher temperatures, the PL peak approaches a roughly constant value and shows temperature-independent chromaticity up to 380 K. This behavior is distinct from the general red-shift for semiconductors and can be attributed to the result of thermal expansion, electron-phonon interaction and structural phase transition around 360 K. The strong nonlinear absorption and temperature-independent chromaticity of CsPbBr3 QDs observed in temperature range from 220 to 380 K will offer new opportunities in nonlinear photonics, light-harvesting, and light-emitting devices. (C) 2016 Optical Society of America
引用
收藏
页码:3821 / 3824
页数:4
相关论文
共 28 条
[1]   Spectroscopy of CsPbBr3 quantum dots in CsBr:Pb crystals [J].
Aceves, R ;
Babin, V ;
Flores, MB ;
Fabeni, P ;
Maaroos, A ;
Nikl, M ;
Nitsch, K ;
Pazzi, GP ;
Salas, RP ;
Sildos, I ;
Zazubovich, N ;
Zazubovich, S .
JOURNAL OF LUMINESCENCE, 2001, 93 (01) :27-41
[2]   Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions [J].
Akkerman, Quinten A. ;
D'Innocenzo, Valerio ;
Accornero, Sara ;
Scarpellini, Alice ;
Petrozza, Annamaria ;
Prato, Mirko ;
Manna, Liberato .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (32) :10276-10281
[3]   Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications [J].
Aldakov, Dmitry ;
Lefrancois, Aurelie ;
Reiss, Peter .
JOURNAL OF MATERIALS CHEMISTRY C, 2013, 1 (24) :3756-3776
[4]   SEQUENCES OF STRUCTURAL PHASE-TRANSITIONS IN PEROVSKITES [J].
ALEKSANDROV, KS .
FERROELECTRICS, 1976, 14 (3-4) :801-805
[5]   Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers [J].
Caruge, J. M. ;
Halpert, J. E. ;
Wood, V. ;
Bulovic, V. ;
Bawendi, M. G. .
NATURE PHOTONICS, 2008, 2 (04) :247-250
[6]  
Chen O, 2013, NAT MATER, V12, P445, DOI [10.1038/NMAT3539, 10.1038/nmat3539]
[7]   Control of Emission Color of High Quantum Yield CH3 NH3 PbBr3 Perovskite Quantum Dots by Precipitation Temperature [J].
Huang, He ;
Susha, Andrei S. ;
Kershaw, Stephen V. ;
Hung, Tak Fu ;
Rogach, Andrey L. .
ADVANCED SCIENCE, 2015, 2 (09)
[8]   Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3 [J].
Huang, Ling-yi ;
Lambrecht, Walter R. L. .
PHYSICAL REVIEW B, 2013, 88 (16)
[9]   6.5% efficient perovskite quantum-dot-sensitized solar cell [J].
Im, Jeong-Hyeok ;
Lee, Chang-Ryul ;
Lee, Jin-Wook ;
Park, Sang-Won ;
Park, Nam-Gyu .
NANOSCALE, 2011, 3 (10) :4088-4093
[10]   The Architecture of Colloidal Quantum Dot Solar Cells: Materials to Devices [J].
Kramer, Illan J. ;
Sargent, Edward H. .
CHEMICAL REVIEWS, 2014, 114 (01) :863-882