Condensed ground states of frustrated Bose-Hubbard models

被引:55
作者
Moeller, G. [1 ]
Cooper, N. R. [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Condensed Matter Theory Grp, Cambridge CB3 0HE, England
来源
PHYSICAL REVIEW A | 2010年 / 82卷 / 06期
基金
英国工程与自然科学研究理事会;
关键词
PHASE-TRANSITIONS; MAGNETIC-FIELDS; QUANTUM;
D O I
10.1103/PhysRevA.82.063625
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study theoretically the ground states of two-dimensional Bose-Hubbard models which are frustrated by gauge fields. Motivated by recent proposals for the implementation of optically induced gauge potentials, we focus on the situation in which the imposed gauge fields give rise to a pattern of staggered fluxes of magnitude alpha and alternating in sign along one of the principal axes. For alpha = 1/2 this model is equivalent to the case of uniform flux per plaquette n(phi) = 1/2, which, in the hard-core limit, realizes the "fully frustrated" spin-1/2 XY model. We show that the mean-field ground states of this frustrated Bose-Hubbard model typically break translational symmetry. Given the presence of both a non-zero superfluid fraction and translational symmetry breaking, these phases are supersolid. We introduce a general numerical technique to detect broken symmetry condensates in exact diagonalization studies. Using this technique we show that, for all cases studied, the ground state of the Bose-Hubbard model with staggered flux alpha is condensed, and we obtain quantitative determinations of the condensate fraction. We discuss the experimental consequences of our results. In particular, we explain the meaning of gauge invariance in ultracold-atom systems subject to optically induced gauge potentials and show how the ability to imprint phase patterns prior to expansion can allow very useful additional information to be extracted from expansion images.
引用
收藏
页数:13
相关论文
共 50 条
[41]   Non-equilibrium dynamics in dissipative Bose-Hubbard chains [J].
Kordas, Georgios ;
Witthaut, Dirk ;
Wimberger, Sandro .
ANNALEN DER PHYSIK, 2015, 527 (9-10) :619-628
[42]   Superfluid drag in the two-component Bose-Hubbard model [J].
Sellin, Karl ;
Babaev, Egor .
PHYSICAL REVIEW B, 2018, 97 (09)
[43]   Photon Transport in a Bose-Hubbard Chain of Superconducting Artificial Atoms [J].
Fedorov, G. P. ;
Remizov, S., V ;
Shapiro, D. S. ;
Pogosov, W., V ;
Egorova, E. ;
Tsitsilin, I ;
Andronik, M. ;
Dobronosova, A. A. ;
Rodionov, I. A. ;
Astafiev, O., V ;
Ustinov, A., V .
PHYSICAL REVIEW LETTERS, 2021, 126 (18)
[44]   Current and entanglement in a three-site Bose-Hubbard ring [J].
Morales-Molina, L. ;
Reyes, S. A. ;
Orszag, M. .
PHYSICAL REVIEW A, 2012, 86 (03)
[45]   Coherence oscillations between weakly coupled Bose-Hubbard dimers [J].
Khripkov, Christine ;
Vardi, Amichay .
PHYSICAL REVIEW A, 2014, 89 (05)
[46]   The dynamics of an open Bose-Hubbard dimer with effective asymmetric coupling [J].
Pi, Jinghui ;
Chen, Feng ;
Liu, Qi ;
You, Li ;
Lu, Rong .
EUROPEAN PHYSICAL JOURNAL B, 2024, 97 (03)
[47]   Mean Field Derivation of DNLS from the Bose-Hubbard Model [J].
Picari, E. ;
Ponno, A. ;
Zanelli, L. .
ANNALES HENRI POINCARE, 2022, 23 (05) :1525-1553
[48]   Bose-Hubbard dimers, Viviani's windows and pendulum dynamics [J].
Graefe, Eva-Maria ;
Korsch, Hans Juergen ;
Strzys, Martin P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (08)
[49]   Ground state phase diagram of the one-dimensional Bose-Hubbard model from restricted Boltzmann machines [J].
McBrian, Kristopher ;
Carleo, Giuseppe ;
Khatami, Ehsan .
XXX IUPAP CONFERENCE ON COMPUTATIONAL PHYSICS, 2019, 1290
[50]   Beyond mean-field dynamics in open Bose-Hubbard chains [J].
Witthaut, D. ;
Trimborn, F. ;
Hennig, H. ;
Kordas, G. ;
Geisel, T. ;
Wimberger, S. .
PHYSICAL REVIEW A, 2011, 83 (06)