Quantification of Fetal DNA by Use of Methylation-Based DNA Discrimination

被引:116
|
作者
Nygren, Anders O. H. [1 ]
Dean, Jarrod [1 ]
Jensen, Taylor J. [1 ]
Kruse, Selena [1 ]
Kwong, William [1 ]
van den Boom, Dirk [2 ]
Ehrich, Mathias [2 ]
机构
[1] Sequenom Ctr Mol Med, San Diego, CA USA
[2] Sequenom, San Diego, CA USA
关键词
NONINVASIVE-PRENATAL-DIAGNOSIS; MATERNAL PLASMA; QUANTITATIVE-ANALYSIS; DOWN-SYNDROME; SERUM; PCR; GENE; ANEUPLOIDIES; PREGNANCY; PLACENTA;
D O I
10.1373/clinchem.2010.146290
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
BACKGROUND: Detection of circulating cell-free fetal nucleic acids in maternal plasma has been used in non-invasive prenatal diagnostics. Most applications rely on the qualitative detection of fetal nucleic acids to determine the genetic makeup of the fetus. This method leads to an analytic dilemma, because test results from samples that do not contain fetal DNA or are contaminated with maternal cellular DNA can be misleading. We developed a multiplex approach to analyze regions that are hypermethylated in placenta relative to maternal blood to evaluate the fetal portion of circulating cell-free DNA isolated from maternal plasma. METHODS: The assay used methylation-sensitive restriction enzymes to eliminate the maternal (unmethylated) fraction of the DNA sample. The undigested fetal DNA fraction was then coamplified in the presence of a synthetic oligonucleotide to permit competitive PCR. The amplification products were quantified by single-base extension and MALDI-TOF MS analysis. RESULTS: Using 2 independent markers, (sex determining region Y)-box 14 (SOX14) and T-box 3 (TBX3), we measured a mean of 151 copies of fetal DNA/mL plasma and a mean fetal fraction of 0.13 in samples obtained from pregnant women. We investigated 242 DNA samples isolated from plasma from pregnant and nonpregnant women and observed an analytical sensitivity and specificity for the assay of 99% and 100%, respectively. CONCLUSIONS: By investigating several regions in parallel, we reduced the measurement variance and enabled quantification of circulating cell-free DNA. Our results indicate that this multiplex methylation-based reaction detects and quantifies the amount of fetal DNA in a sample isolated from maternal plasma. (c) 2010 American Association for Clinical Chemistry
引用
收藏
页码:1627 / 1635
页数:9
相关论文
共 50 条
  • [41] DNA methylation-based forensic age estimation in human bone
    Gopalan, Shyamalika
    Gaige, Jonathan
    Henn, Brenna M.
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, 2020, 171 : 104 - 105
  • [42] DNA methylation-based predictors of health: applications and statistical considerations
    Yousefi, Paul D.
    Suderman, Matthew
    Langdon, Ryan
    Whitehurst, Oliver
    Smith, George Davey
    Relton, Caroline L.
    NATURE REVIEWS GENETICS, 2022, 23 (06) : 369 - 383
  • [43] DNA methylation-based predictors of health: applications and statistical considerations
    Paul D. Yousefi
    Matthew Suderman
    Ryan Langdon
    Oliver Whitehurst
    George Davey Smith
    Caroline L. Relton
    Nature Reviews Genetics, 2022, 23 (6) : 369 - 383
  • [44] Pros and cons of methylation-based enrichment methods for ancient DNA
    Andaine Seguin-Orlando
    Cristina Gamba
    Clio Der Sarkissian
    Luca Ermini
    Guillaume Louvel
    Eugenia Boulygina
    Alexey Sokolov
    Artem Nedoluzhko
    Eline D. Lorenzen
    Patricio Lopez
    H. Gregory McDonald
    Eric Scott
    Alexei Tikhonov
    Thomas W. Stafford,
    Ahmed H. Alfarhan
    Saleh A. Alquraishi
    Khaled A. S. Al-Rasheid
    Beth Shapiro
    Eske Willerslev
    Egor Prokhortchouk
    Ludovic Orlando
    Scientific Reports, 5
  • [45] Discovery and development of DNA methylation-based biomarkers for lung cancer
    Walter, Kimberly
    Holcomb, Thomas
    Januario, Tom
    Yauch, Robert L.
    Du, Pan
    Bourgon, Richard
    Seshagiri, Somasekar
    Amler, Lukas C.
    Hampton, Garret M.
    Shames, David S.
    EPIGENOMICS, 2014, 6 (01) : 59 - 72
  • [46] Integration of datasets for individual prediction of DNA methylation-based biomarkers
    Merzbacher, Charlotte
    Ryan, Barry
    Goldsborough, Thibaut
    Hillary, Robert F.
    Campbell, Archie
    Murphy, Lee
    Mcintosh, Andrew M.
    Liewald, David
    Harris, Sarah E.
    Mcrae, Allan F.
    Cox, Simon R.
    Cannings, Timothy I.
    Vallejos, Catalina A.
    Mccartney, Daniel L.
    Marioni, Riccardo E.
    GENOME BIOLOGY, 2023, 24 (01)
  • [47] Integration of datasets for individual prediction of DNA methylation-based biomarkers
    Charlotte Merzbacher
    Barry Ryan
    Thibaut Goldsborough
    Robert F. Hillary
    Archie Campbell
    Lee Murphy
    Andrew M. McIntosh
    David Liewald
    Sarah E. Harris
    Allan F. McRae
    Simon R. Cox
    Timothy I. Cannings
    Catalina A. Vallejos
    Daniel L. McCartney
    Riccardo E. Marioni
    Genome Biology, 24
  • [48] A DNA METHYLATION-BASED CLASSIFIER FOR ASSESSMENT OF RISK OF RECURRENCE IN MENINGIOMA
    Sahm, Felix
    Schrimpf, Daniel
    Sill, Martin
    Stichel, Damian
    Pfister, Stefan M.
    von Deimling, Andreas
    NEURO-ONCOLOGY, 2018, 20 : 151 - 151
  • [49] Pros and cons of methylation-based enrichment methods for ancient DNA
    Seguin-Orlando, Andaine
    Gamba, Cristina
    Sarkissian, Clio Der
    Ermini, Luca
    Louvel, Guillaume
    Boulygina, Eugenia
    Sokolov, Alexey
    Nedoluzhko, Artem
    Lorenzen, Eline D.
    Lopez, Patricio
    McDonald, H. Gregory
    Scott, Eric
    Tikhonov, Alexei
    Stafford, Thomas W., Jr.
    Alfarhan, Ahmed H.
    Alquraishi, Saleh A.
    Al-Rasheid, Khaled A. S.
    Shapiro, Beth
    Willerslev, Eske
    Prokhortchouk, Egor
    Orlando, Ludovic
    SCIENTIFIC REPORTS, 2015, 5
  • [50] Construction of DNA methylation-based biomarkers for diagnosis of hepatocellular carcinoma
    Xu, Ximing
    Chen, Jiayu
    Shen, Yang
    JOURNAL OF CLINICAL ONCOLOGY, 2023, 41 (16)