ON THE FIRST EIGENVALUE OF THE NORMALIZED p-LAPLACIAN

被引:1
|
作者
Crasta, Graziano [1 ]
Fragala, Ilaria [2 ]
Kawohl, Bernd [3 ]
机构
[1] Univ Roma I, Dipartimento Matemat G Castelnuovo, Piazzale Aldo Moro 2, I-00185 Rome, Italy
[2] Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[3] Univ Cologne, Math Inst, D-50923 Cologne, Germany
关键词
Normalized p-Laplacian; viscosity solutions; eigenvalue problem; TUG-OF-WAR; MAXIMUM PRINCIPLE; VISCOSITY SOLUTIONS; INFINITY; REGULARITY; DIRICHLET; DOMAINS;
D O I
10.1090/proc/14823
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that if Omega is an open bounded domain with smooth and connected boundary, for every p is an element of (1,+infinity) the first Dirichlet eigenvalue of the normalized p-Laplacian is simple in the sense that two positive eigenfunctions are necessarily multiple of each other. We also give a (nonoptimal) lower bound for the eigenvalue in terms of the measure of Omega, and we address the open problem of proving a Faber-Krahn-type inequality with balls as optimal domains.
引用
收藏
页码:577 / 590
页数:14
相关论文
共 50 条
  • [41] Eigenvalue Problem For Perturbated p-Laplacian
    Latifi, Mehdi
    Alimohammady, Mohsen
    THAI JOURNAL OF MATHEMATICS, 2022, 20 (01): : 35 - 54
  • [42] THE DUAL EIGENVALUE PROBLEMS FOR p-LAPLACIAN
    Cheng, Y. -H.
    Lian, W. -C.
    Wang, W. -C.
    ACTA MATHEMATICA HUNGARICA, 2014, 142 (01) : 132 - 151
  • [43] Eigenvalue estimate for the weighted p-Laplacian
    Wang, Lin Feng
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2012, 191 (03) : 539 - 550
  • [44] On the fundamental eigenvalue ratio of the p-Laplacian
    Fleckinger, Jacqueline
    Harrell, Evans M., II
    de Thelin, Francois
    BULLETIN DES SCIENCES MATHEMATIQUES, 2007, 131 (07): : 613 - 619
  • [45] Principal eigenvalue of the p-laplacian in RN
    Furusho, Yasuhiro
    Murata, Yuji
    Nonlinear Analysis, Theory, Methods and Applications, 1997, 30 (08): : 4749 - 4756
  • [46] The dual eigenvalue problems for p-Laplacian
    Yan-Hsiou Cheng
    Wei-Cheng Lian
    Wei-Chuan Wang
    Acta Mathematica Hungarica, 2014, 142 : 132 - 151
  • [47] Eigenvalue bounds for the signless p-Laplacian
    Borba, Elizandro Max
    Schwerdtfeger, Uwe
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [48] LINKED EIGENVALUE PROBLEMS FOR THE P-LAPLACIAN
    BINDING, PA
    HUANG, YX
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 : 1023 - 1036
  • [49] Estimates of the principal eigenvalue of the p-Laplacian
    Benedikt, Jiri
    Drabek, Pavel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (01) : 311 - 315
  • [50] Principal eigenvalue of the p-Laplacian in RN
    Furusho, Y
    Murata, Y
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (08) : 4749 - 4756