ON THE FIRST EIGENVALUE OF THE NORMALIZED p-LAPLACIAN

被引:1
|
作者
Crasta, Graziano [1 ]
Fragala, Ilaria [2 ]
Kawohl, Bernd [3 ]
机构
[1] Univ Roma I, Dipartimento Matemat G Castelnuovo, Piazzale Aldo Moro 2, I-00185 Rome, Italy
[2] Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[3] Univ Cologne, Math Inst, D-50923 Cologne, Germany
关键词
Normalized p-Laplacian; viscosity solutions; eigenvalue problem; TUG-OF-WAR; MAXIMUM PRINCIPLE; VISCOSITY SOLUTIONS; INFINITY; REGULARITY; DIRICHLET; DOMAINS;
D O I
10.1090/proc/14823
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that if Omega is an open bounded domain with smooth and connected boundary, for every p is an element of (1,+infinity) the first Dirichlet eigenvalue of the normalized p-Laplacian is simple in the sense that two positive eigenfunctions are necessarily multiple of each other. We also give a (nonoptimal) lower bound for the eigenvalue in terms of the measure of Omega, and we address the open problem of proving a Faber-Krahn-type inequality with balls as optimal domains.
引用
收藏
页码:577 / 590
页数:14
相关论文
共 50 条