MAGNETIC LAPLACIANS OF LOCALLY EXACT FORMS ON THE SIERPINSKI GASKET

被引:3
作者
Hyde, Jessica [1 ]
Kelleher, Daniel [2 ]
Moeller, Jesse [3 ]
Rogers, Luke [4 ]
Seda, Luis [5 ]
机构
[1] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Alberta, Edmonton, AB, Canada
[3] Univ Nebraska, Lincoln, NE USA
[4] Univ Connecticut, Storrs, CT 06269 USA
[5] Univ Puerto Rico Mayaguez, Mayaguez, PR USA
基金
美国国家科学基金会;
关键词
Analysis on fractals; Sierpinski gasket; magnetic form; Schrodinger operator; SELF-SIMILAR FRACTALS; DIRICHLET FORMS; SCHRODINGER-EQUATION; SPECTRUM; SPACES; DERIVATIONS; FRACTAFOLDS; OPERATORS; GRAPHS; FIELD;
D O I
10.3934/cpaa.2017113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an explicit construction of a magnetic Schrodinger operator corresponding to a field with flux through finitely many holes of the Sierpinski Gasket. The operator is shown to have discrete spectrum accumulating at infinity, and it is shown that the asymptotic distribution of eigenvalues is the same as that for the Laplacian. Most eigenfunctions may be computed using gauge transformations corresponding to the magnetic field and the remainder of the spectrum may be approximated to arbitrary precision by using a sequence of approximations by magnetic operators on finite graphs.
引用
收藏
页码:2299 / 2319
页数:21
相关论文
共 42 条
[1]   HODGE-de RHAM THEORY ON FRACTAL GRAPHS AND FRACTALS [J].
Aaron, Skye ;
Conn, Zach ;
Strichartz, Robert S. ;
Yu, Hui .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (02) :903-928
[2]   Physical consequences of complex dimensions of fractals [J].
Akkermans, E. ;
Dunne, G. V. ;
Teplyaev, A. .
EPL, 2009, 88 (04)
[3]  
Akkermans E., 2013, Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics II: Fractals in Applied Mathematics vol 601, pp 1
[4]   Spatial log-periodic oscillations of first-passage observables in fractals [J].
Akkermans, Eric ;
Benichou, Olivier ;
Dunne, Gerald V. ;
Teplyaev, Alexander ;
Voituriez, Raphael .
PHYSICAL REVIEW E, 2012, 86 (06)
[5]   Thermodynamics of Photons on Fractals [J].
Akkermans, Eric ;
Dunne, Gerald V. ;
Teplyaev, Alexander .
PHYSICAL REVIEW LETTERS, 2010, 105 (23)
[6]   SOME PROPERTIES OF THE SPECTRUM OF THE SIERPINSKI GASKET IN A MAGNETIC-FIELD [J].
ALEXANDER, S .
PHYSICAL REVIEW B, 1984, 29 (10) :5504-5508
[7]  
ALEXANDER S, 1982, J PHYS LETT-PARIS, V43, pL625, DOI 10.1051/jphyslet:019820043017062500
[8]  
[Anonymous], 2001, ANAL FRACTALS
[9]  
[Anonymous], 1991, DEGRUYTER STUDIES MA
[10]   BROWNIAN-MOTION ON THE SIERPINSKI GASKET [J].
BARLOW, MT ;
PERKINS, EA .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (04) :543-623