A stability result of a Timoshenko system with a delay term in the internal feedback

被引:82
|
作者
Said-Houari, Belkacem [1 ]
Laskri, Yamina [2 ]
机构
[1] Univ Savoie, Math Lab, F-73376 Le Bourget Du Lac, France
[2] Univ Badji Mokhtar, Lab Math Appl, Annaba 23000, Algeria
关键词
Timoshenko; Delay; Global solutions; Stability; Damping; Exponential decay; EXPONENTIAL STABILITY; NONLINEAR THERMOELASTICITY; GLOBAL EXISTENCE; WAVE-EQUATION; 2ND SOUND; STABILIZATION; BOUNDARY; HEAT;
D O I
10.1016/j.amc.2010.08.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a Timoshenko system with a delay term in the feedback and prove a stability result. The beam is clamped at the endpoints and has, in addition to an internal damping, a feedback with a delay. Under an appropriate assumption on the weights of the two feedbacks, we prove the well-posedness of the system and establish an exponential decay result for the case of equal-speed wave propagation. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2857 / 2869
页数:13
相关论文
共 50 条
  • [31] GLOBAL EXISTENCE AND ENERGY DECAY OF SOLUTIONS TO A NONLINEAR TIMOSHENKO BEAM SYSTEM WITH A DELAY TERM
    Benaissa, Abbes
    Bahlil, Mounir
    TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (05): : 1411 - 1437
  • [32] Existence of Attractors for a Nonlinear Timoshenko System with Delay
    Ramos, Anderson J. A.
    Dos Santos, Manoel J.
    Freitas, Mirelson M.
    Almeida Junior, Dilberto S.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (04) : 1997 - 2020
  • [33] EXPONENTIAL STABILITY OF TIMOSHENKO BEAM SYSTEM WITH DELAY TERMS IN BOUNDARY FEEDBACKS
    Han, Zhong-Jie
    Xu, Gen-Qi
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2011, 17 (02) : 552 - 574
  • [34] Dynamics of the Nonlinear Timoshenko System with Variable Delay
    Yang, Xin-Guang
    Zhang, Jing
    Lu, Yongjin
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (01) : 297 - 326
  • [35] On porous-elastic system with a time-varying delay term in the internal feedbacks
    Borges Filho, E.
    Santos, M. L.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2020, 100 (08):
  • [36] Asymptotic behavior of weakly dissipative Timoshenko system with internal constant delay feedbacks
    Apalara, Tijani A.
    APPLICABLE ANALYSIS, 2016, 95 (01) : 187 - 202
  • [37] About partial boundary dissipation to Timoshenko system with delay
    Ochoa Ochoa, Elena
    Gomez Avalos, Gerardo
    Munoz Rivera, Jaime E.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (17) : 9805 - 9813
  • [38] Global existence and exponential stability for a nonlinear Timoshenko system with delay
    Baowei Feng
    Maurício L Pelicer
    Boundary Value Problems, 2015
  • [39] A stability and numerical study of the solutions of a Timoshenko system with distributed delay
    Nonato, Carlos A.
    Dos Santos, Manoel J.
    Avila, Jorge A. J.
    Raposo, Carlos A.
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (05) : 2090 - 2108
  • [40] Stability for thermo-elastic Bresse system of second sound with past history and delay term
    Zennir, Khaled
    Ouchenane, Djamel
    Choucha, Abdelbaki
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2020, 36 (04) : 315 - 328