The linear viscoelastic properties of two series of Ziegler-Natta and metallocene HDPEs (ZN-HDPEs and m-HDPEs, respectively) of broad molecular weight distribution (MWD) have been studied. Correlations between zero-shear viscosity and molecular weight and molecular weight distribution show that the breadth of the MWD for m-HDPEs plays a role. Other interesting correlations between the crossover modulus and steady-state compliance with MWD of both these classes of polymers have also been derived. Finally, the steady-shear viscosities from capillary rheometry are compared with LVE data to check the applicability of the empirical Cox-Merz rule. It is shown that the original Cox-Merz rule is applicable for the ZN-HDPEs, while it apparently fails for the m-HDPEs. However, once the capillary data for m-HDPEs are corrected for slip effects, the applicability of the Cox-Merz rule is validated for their case as well.