Evolutionary history of the poly(ADP-ribose) polymerase gene family in eukaryotes

被引:106
作者
Citarelli, Matteo [1 ]
Teotia, Sachin [1 ,2 ]
Lamb, Rebecca S. [1 ,2 ]
机构
[1] Ohio State Univ, Plant Cellular & Mol Biol Dept, Aronoff Lab 500, Columbus, OH 43210 USA
[2] Ohio State Univ, Mol Cellular & Dev Biol Program, Columbus, OH 43210 USA
来源
BMC EVOLUTIONARY BIOLOGY | 2010年 / 10卷
关键词
FINGER ANTIVIRAL PROTEIN; UBIQUITIN-CONJUGATING ENZYME; DNA-DAMAGE REPAIR; VAULT RIBONUCLEOPROTEIN-PARTICLES; MULTIPLE SEQUENCE ALIGNMENT; NUCLEAR-PORE COMPLEXES; RNA SPLICING FACTORS; MESSENGER-RNA; ADP-RIBOSYLATION; GENOME SEQUENCE;
D O I
10.1186/1471-2148-10-308
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: The Poly(ADP-ribose) polymerase (PARP) superfamily was originally identified as enzymes that catalyze the attachment of ADP-ribose subunits to target proteins using NAD+ as a substrate. The family is characterized by the catalytic site, termed the PARP signature. While these proteins can be found in a range of eukaryotes, they have been best studied in mammals. In these organisms, PARPs have key functions in DNA repair, genome integrity and epigenetic regulation. More recently it has been found that proteins within the PARP superfamily have altered catalytic sites, and have mono(ADP-ribose) transferase (mART) activity or are enzymatically inactive. These findings suggest that the PARP signature has a broader range of functions that initially predicted. In this study, we investigate the evolutionary history of PARP genes across the eukaryotes. Results: We identified in silico 236 PARP proteins from 77 species across five of the six eukaryotic supergroups. We performed extensive phylogenetic analyses of the identified PARPs. They are found in all eukaryotic supergroups for which sequence is available, but some individual lineages within supergroups have independently lost these genes. The PARP superfamily can be subdivided into six clades. Two of these clades were likely found in the last common eukaryotic ancestor. In addition, we have identified PARPs in organisms in which they have not previously been described. Conclusions: Three main conclusions can be drawn from our study. First, the broad distribution and pattern of representation of PARP genes indicates that the ancestor of all extant eukaryotes encoded proteins of this type. Second, the ancestral PARP proteins had different functions and activities. One of these proteins was similar to human PARP1 and likely functioned in DNA damage response. The second of the ancestral PARPs had already evolved differences in its catalytic domain that suggest that these proteins may not have possessed poly(ADP-ribosyl)ation activity. Third, the diversity of the PARP superfamily is larger than previously documented, suggesting as more eukaryotic genomes become available, this gene family will grow in both number and type.
引用
收藏
页数:26
相关论文
共 172 条
[1]   ProtTest: selection of best-fit models of protein evolution [J].
Abascal, F ;
Zardoya, R ;
Posada, D .
BIOINFORMATICS, 2005, 21 (09) :2104-2105
[2]   B-aggressive lymphoma family proteins have unique domains that modulate transcription and exhibit poly(ADP-ribose) polymerase activity [J].
Aguiar, RCT ;
Takeyama, K ;
He, CY ;
Kreinbrink, K ;
Shipp, MA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (40) :33756-33765
[3]   BAL is a novel risk-related gene in diffuse large B-cell lymphomas that enhances cellular migration [J].
Aguiar, RCT ;
Yakushijin, Y ;
Kharbanda, S ;
Salgia, R ;
Fletcher, JA ;
Shipp, MA .
BLOOD, 2000, 96 (13) :4328-4334
[4]   Arabidopsis radical-induced cell death1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses [J].
Ahlfors, R ;
Lång, S ;
Overmyer, K ;
Jaspers, P ;
Brosché, M ;
Taurianinen, A ;
Kollist, H ;
Tuominen, H ;
Belles-Boix, E ;
Piippo, M ;
Inzé, D ;
Palva, ET ;
Kangasjärvi, J .
PLANT CELL, 2004, 16 (07) :1925-1937
[5]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[6]   PARP-2, a novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase [J].
Amé, JC ;
Rolli, V ;
Schreiber, V ;
Niedergang, C ;
Apiou, F ;
Decker, P ;
Muller, S ;
Hoger, T ;
Murcia, JMD ;
de Murcia, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (25) :17860-17868
[7]   The PARP superfamily [J].
Amé, JC ;
Spenlehauer, C ;
de Murcia, G .
BIOESSAYS, 2004, 26 (08) :882-893
[8]   Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative [J].
Anisimova, Maria ;
Gascuel, Olivier .
SYSTEMATIC BIOLOGY, 2006, 55 (04) :539-552
[9]  
[Anonymous], 1999, Phylogenetic systematics
[10]   The U box is a modified RING finger - a common domain in ubiquitination [J].
Aravind, L ;
Koonin, EV .
CURRENT BIOLOGY, 2000, 10 (04) :R132-R134