Relationships among growth mechanism, structure and morphology of PEALD TiO2 films: the influence of O2 plasma power, precursor chemistry and plasma exposure mode

被引:34
作者
Chiappim, W. [1 ,2 ]
Testoni, G. E. [1 ,2 ]
Doria, A. C. O. C. [1 ]
Pessoa, R. S. [1 ,2 ]
Fraga, M. A. [3 ]
Galvao, N. K. A. M. [2 ]
Grigorov, K. G. [4 ]
Vieira, L. [1 ,2 ]
Maciel, H. S. [1 ,2 ]
机构
[1] Univ Vale Paraiba Univap, Nanotechnol & Plasmas Proc Lab, BR-12244000 Sao Jose Dos Campos, SP, Brazil
[2] Inst Tecnol Aeronaut ITA DCTA, Plasma & Proc Lab, BR-12228900 Sao Jose Dos Campos, SP, Brazil
[3] INPE, Associate Lab Sensors & Mat, BR-12227010 Sao Jose Dos Campos, SP, Brazil
[4] Space Res & Technol Inst, Acad G Bonchev Str Bl-1, Sofia 1113, Bulgaria
基金
巴西圣保罗研究基金会;
关键词
Brazilian MRS; plasma-enhanced atomic layer deposition; titanium dioxide; x-ray diffraction; morphology; RBS; ATOMIC LAYER DEPOSITION; CHEMICAL-VAPOR-DEPOSITION; THIN-FILMS; OPTICAL-PROPERTIES; LOW-PRESSURE; TIN OXIDE; TEMPERATURE; SENSITIVITY; DEPENDENCE; CELLS;
D O I
10.1088/0957-4484/27/30/305701
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Titanium dioxide (TiO2) thin films have generated considerable interest over recent years, because they are functional materials suitable for a wide range of applications. The efficient use of the outstanding functional properties of these films relies strongly on their basic characteristics, such as structure and morphology, which are affected by deposition parameters. Here, we report on the influence of plasma power and precursor chemistry on the growth kinetics, structure and morphology of TiO2 thin films grown on Si(100) by plasma-enhanced atomic layer deposition (PEALD). For this, remote capacitively coupled 13.56 MHz oxygen plasma was used to act as a co-reactant during the ALD process using two different metal precursors: titanium tetrachloride (TiCl4) and titanium tetraisopropoxide (TTIP). Furthermore, we investigate the effect of direct plasma exposure during the co-reactant pulse on the aforementioned material properties. The extensive characterization of TiO2 films using Rutherford backscattering spectroscopy, ellipsometry, x-ray diffraction (XRD), field-emission scanning electron microscopy, and atomic force microscopy (AFM) have revealed how the investigated process parameters affect their growth per cycle (GPC), crystallization and morphology. The GPC tends to increase with plasma power for both precursors, however, for the TTIP precursor, it starts decreasing when the plasma power is greater than 100 W. From XRD analysis, we found a good correlation between film crystallinity and GPC behavior, mainly for the TTIP process. The AFM images indicated the formation of films with grain size higher than film thickness (grain size/film thickness ratio approximate to 20) for both precursors, and plasma power analysis allows us to infer that this phenomenon can be directly related to the increase of the flux of energetic oxygen species on the substrate/growing film surface. Finally, the effect of direct plasma exposure on film structure and morphology was evidenced showing that the grid removal causes a drastic reduction in the grain size, particularly for TiO2 synthesized using TiCl4.
引用
收藏
页数:15
相关论文
共 60 条
  • [21] Conformity and structure of titanium oxide films grown by atomic layer deposition on silicon substrates
    Jogi, Indrek
    Pars, Martti
    Aarik, Jaan
    Aidla, Aleks
    Laan, Matti
    Sundqvist, Jonas
    Oberbeck, Lars
    Heitmann, Johannes
    Kukli, Kaupo
    [J]. THIN SOLID FILMS, 2008, 516 (15) : 4855 - 4862
  • [22] Plasma-Assisted Atomic Layer Deposition of Al2O3 at Room Temperature
    Kaariainen, Tommi O.
    Cameron, David C.
    [J]. PLASMA PROCESSES AND POLYMERS, 2009, 6 : S237 - S241
  • [23] Conformality of remote plasma-enhanced atomic layer deposition processes: An experimental study
    Kariniemi, Maarit
    Niinisto, Jaakko
    Vehkamaki, Marko
    Kemell, Marianna
    Ritala, Mikko
    Leskela, Markku
    Putkonen, Matti
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2012, 30 (01):
  • [24] Highly efficient and bending durable perovskite solar cells: toward a wearable power source
    Kim, Byeong Jo
    Kim, Dong Hoe
    Lee, Yoo-Yong
    Shin, Hee-Won
    Han, Gill Sang
    Hong, Jung Sug
    Mahmood, Khalid
    Ahn, Tae Kyu
    Joo, Young-Chang
    Hong, Kug Sun
    Park, Nam-Gyu
    Lee, Sangwook
    Jung, Hyun Suk
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (03) : 916 - 921
  • [25] Plasma-Enhanced Atomic Layer Deposition of Anatase TiO2 Using TiCl4
    Kubala, Nicholas G.
    Rowlette, Pieter C.
    Wolden, Colin A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (37) : 16307 - 16310
  • [26] Deposition temperature dependence of titanium oxide thin films grown by remote-plasma atomic layer deposition
    Lee, Jaesang
    Lee, Seung Jae
    Han, Won Bae
    Jeon, Heeyoung
    Park, Jingyu
    Jang, Woochool
    Yoon, Chong Seung
    Jeon, Hyeongtag
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2013, 210 (02): : 276 - 284
  • [27] PREPARATION AND PROPERTIES OF AMORPHOUS TIO2 THIN-FILMS BY PLASMA-ENHANCED CHEMICAL-VAPOR-DEPOSITION
    LEE, WG
    WOO, SI
    KIM, JC
    CHOI, SH
    OH, KH
    [J]. THIN SOLID FILMS, 1994, 237 (1-2) : 105 - 111
  • [28] Effect of ion bombardment on the structural and optical properties of TiO2 thin films deposited from oxygen/titanium tetraisopropoxide inductively coupled plasma
    Li, D.
    Carette, M.
    Granier, A.
    Landesman, J. P.
    Goullet, A.
    [J]. THIN SOLID FILMS, 2015, 589 : 783 - 791
  • [29] Development of Inverted Organic Solar Cells with TiO2 Interface Layer by Using Low-Temperature Atomic Layer Deposition
    Lin, Zhenhua
    Jiang, Changyun
    Zhu, Chunxiang
    Zhang, Jie
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (03) : 713 - 718
  • [30] Electrical properties of Ga2O3-based dielectric thin films prepared by plasma enhanced atomic layer deposition (PEALD)
    Liu, G. X.
    Shan, F. K.
    Park, J. J.
    Lee, W. J.
    Lee, G. H.
    Kim, I. S.
    Shin, B. C.
    Yoon, S. G.
    [J]. JOURNAL OF ELECTROCERAMICS, 2006, 17 (2-4) : 145 - 149