Trace anodic migration of iridium and titanium ions and subsequent cathodic selectivity degradation in acid electrolysis systems

被引:15
作者
Haraldsted, Jens-Peter B. [1 ]
Revay, Zsolt [2 ]
Frydendal, Rasmus [3 ]
Verdaguer-Casadevall, Arnau [3 ]
Rossmeisl, Jan [4 ]
Kibsgaard, Jakob [1 ]
Chorkendorff, Ib [1 ]
机构
[1] Tech Univ Denmark, Dept Phys, Sect Surface Phys & Catalysis, Bygning 311, DK-2800 Lyngby, Denmark
[2] Tech Univ Munich, Forsch Neutronenquelle Heinz Maier Leibnitz FRM 2, Lichtenbergstr 1, D-85747 Garching, Germany
[3] HPNow ApS, Ole Maaloes Vej 3, DK-2200 Copenhagen N, Denmark
[4] Univ Copenhagen, Nanosci Ctr, Dept Chem, Univ Pk 5, DK-2100 Copenhagen O, Denmark
关键词
Electrochemistry; Electrolysis; Oxygen evolution; PEM; PGAA; OXYGEN EVOLUTION ACTIVITY; POLYMER ELECTROLYTE; CORROSION BEHAVIOR; WATER; STABILITY; ELECTROCATALYSTS; REDUCTION; NITROGEN; FLUORIDE; METALS;
D O I
10.1016/j.mtener.2019.100352
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The oxygen evolution reaction in acidic electrolyzers requires the presence of stable catalysts and current collectors at the anode. IrO2 catalysts and Ti current collectors are among the best in this regard. We show evidence of iridium and titanium corrosion and subsequent membrane crossover in long-term experiments of proton-exchange membrane electrolyzers for H2O2 production. The accumulation of trace iridium at the cathode was linked to degraded performance and increased cathodic current from hydrogen evolution. Detection of trace metal content at the cathode electrodes was enabled by prompt-gamma ray activation analysis and neutron activation analysis. These findings are not just relevant for H2O2 electrolyzers but to any system using iridium-based anode catalysts, including CO2 electroreduction. (C) 2019 Published by Elsevier Ltd.
引用
收藏
页数:6
相关论文
共 41 条
[1]   The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell. Part 2: The removal of phenols and related compounds from aqueous effluents [J].
Alverez-Gallegos, A ;
Pletcher, D .
ELECTROCHIMICA ACTA, 1999, 44 (14) :2483-2492
[2]  
[Anonymous], 2007, Ullmann's Encyclopedia of Industrial Chemistry, V18, P393, DOI DOI 10.1002/14356007.A13
[3]  
Bianchi G, 1962, ELECTROCHIM ACTA
[4]   INFLUENCE OF FLUORIDE ON TITANIUM IN AN ACIDIC ENVIRONMENT MEASURED BY POLARIZATION RESISTANCE TECHNIQUE [J].
BOERE, G .
JOURNAL OF APPLIED BIOMATERIALS, 1995, 6 (04) :283-288
[5]   Oxygen evolution activity and stability of iridium in acidic media. Part 2. - Electrochemically grown hydrous iridium oxide [J].
Cherevko, Serhiy ;
Geiger, Simon ;
Kasian, Olga ;
Mingers, Andrea ;
Mayrhofer, Karl J. J. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2016, 774 :102-110
[6]   Oxygen evolution activity and stability of iridium in acidic media. Part 1. - Metallic iridium [J].
Cherevko, Serhiy ;
Geiger, Simon ;
Kasian, Olga ;
Mingers, Andrea ;
Mayrhofer, Karl J. J. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2016, 773 :69-78
[7]   Stability of nanostructured iridium oxide electrocatalysts during oxygen evolution reaction in acidic environment [J].
Cherevko, Serhiy ;
Reier, Tobias ;
Zeradjanin, Aleksandar R. ;
Pawolek, Zarina ;
Strasser, Peter ;
Mayrhofer, Karl J. J. .
ELECTROCHEMISTRY COMMUNICATIONS, 2014, 48 :81-85
[8]   Durability and degradation issues of PEM fuel cell components [J].
de Bruijn, F. A. ;
Dam, V. A. T. ;
Janssen, G. J. M. .
FUEL CELLS, 2008, 8 (01) :3-22
[9]  
Diaz-morales O., 2016, WATER OXIDATION ACID, DOI [10.1038/ncomms12363, DOI 10.1038/NCOMMS12363]
[10]  
Exxon Mobil Corporation, 2018, OUTL EN VIEW 2040