Prescribed Performance-Based Event-Driven Fault-Tolerant Robust Attitude Control of Spacecraft under Restricted Communication

被引:7
|
作者
Amrr, Syed Muhammad [1 ]
Alturki, Abdulrahman [2 ]
Kumar, Ankit [1 ]
Nabi, M. [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Elect Engn, New Delhi 110016, India
[2] Qassim Univ, Coll Engn, Elect Engn Dept, Buraydah 51452, Saudi Arabia
关键词
attitude regulation; sliding mode control; prescribed performance function; event-trigger method; TRACKING CONTROL; RIGID SPACECRAFT; FLEXIBLE SPACECRAFT; OBSERVER; SYSTEMS;
D O I
10.3390/electronics10141709
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper explores the problem of attitude stabilization of spacecraft under multiple uncertainties and constrained bandwidth resources. The proposed control law is designed by combining the sliding mode control (SMC) technique with a prescribed performance control (PPC) method. Further, the control input signal is executed in an aperiodic time framework using the event-trigger (ET) mechanism to minimize the control data transfer through a constrained wireless network. The SMC provides robustness against inertial uncertainties, disturbances, and actuator faults, whereas the PPC strategy aims to achieve a predefined system performance. The PPC technique is developed by transforming the system attitude into a new variable using the prescribed performance function, which acts as a predefined constraint for transient and steady-state responses. In addition, the ET mechanism updates the input value to the actuator only when there is a violation of the triggering rule; otherwise, the actuator output remains at a fixed value. Moreover, the proposed triggering rule is constituted through the Lyapunov stability analysis. Thus, the proposed approach can be extended to a broader class of complex nonlinear systems. The theoretical analyses prove the uniformly ultimately bounded stability of the closed-loop system and the non-existence of the Zeno behavior. The effectiveness of the proposed methodology is also presented along with the comparative studies through simulation results.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Event-driven fault-tolerant attitude control of spacecraft with finite-time disturbance observer under input saturation
    Amrr, Syed Muhammad
    Saidi, Abdelaziz Salah
    Nabi, M.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (05) : 3227 - 3246
  • [2] ASILO-Based Active Fault-Tolerant Control of Spacecraft Attitude with Resilient Prescribed Performance
    Yang, Ze
    Yang, Baoqing
    Ji, Ruihang
    Ma, Jie
    ELECTRONICS, 2025, 14 (01):
  • [3] Fault-tolerant attitude tracking control of combined spacecraft with reaction wheels under prescribed performance
    Huang, Xiuwei
    Duan, Guangren
    ISA TRANSACTIONS, 2020, 98 (98) : 161 - 172
  • [4] Robust constrained fault-tolerant attitude control for flexible spacecraft
    Long, Haihui
    Zhao, Jiankang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2018, 232 (16) : 3011 - 3023
  • [5] Fault-Tolerant Prescribed Performance Attitude Tracking Control for Spacecraft Under Input Saturation
    Shao, Xiaodong
    Hu, Qinglei
    Shi, Yang
    Jiang, Boyan
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2020, 28 (02) : 574 - 582
  • [6] Adaptive Fault-Tolerant Attitude Tracking Control of Spacecraft With Prescribed Performance
    Hu, Qinglei
    Shao, Xiaodong
    Guo, Lei
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2018, 23 (01) : 331 - 341
  • [7] Robust Control Allocation in Attitude Fault-Tolerant Control for Combined Spacecraft Under Measurement Uncertainty
    Huang, Xiu-Wei
    Duan, Guang-Ren
    IEEE ACCESS, 2019, 7 : 156191 - 156206
  • [8] Fault-tolerant spacecraft attitude control: A critical assessment
    Hasan, Muhammad Noman
    Haris, Muhammad
    Qin, Shiyin
    PROGRESS IN AEROSPACE SCIENCES, 2022, 130
  • [9] Robust fault-tolerant control for spacecraft attitude stabilisation subject to input saturation
    Hu, Q.
    Xiao, B.
    Friswell, M. I.
    IET CONTROL THEORY AND APPLICATIONS, 2011, 5 (02) : 271 - 282
  • [10] Robust fault-tolerant attitude control of spacecraft using hybrid actuators
    Xu, Yiqi
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2022, 94 (05) : 649 - 666