Reliability and Reproducibility of Hadamard Encoded Pseudo-Continuous Arterial Spin Labeling in Healthy Elderly

被引:6
|
作者
Neumann, Katja [1 ]
Schidlowski, Martin [2 ,3 ]
Guenther, Matthias [4 ,5 ]
Stoecker, Tony [2 ,6 ]
Duezel, Emrah [1 ,7 ,8 ,9 ]
机构
[1] German Ctr Neurodegenerat Dis DZNE, Magdeburg, Germany
[2] German Ctr Neurodegenerat Dis DZNE, Bonn, Germany
[3] Univ Bonn, Dept Epileptol, Med Ctr, Bonn, Germany
[4] Fraunhofer Inst Digital Med MEVIS, Bremen, Germany
[5] Univ Bremen, MR Imaging & Spect, Bremen, Germany
[6] Univ Bonn, Dept Phys & Astron, Bonn, Germany
[7] Otto von Guericke Univ, Inst Cognit Neurol & Dementia Res, Magdeburg, Germany
[8] UCL, Inst Cognit Neurosci, London, England
[9] Ctr Behav Brain Sci, Magdeburg, Germany
关键词
arterial spin labeling; pCASL; reliability; reproducibility; perfusion; cerebral blood flow; arterial transit time; hadamard encoding; CEREBRAL-BLOOD-FLOW; BOLUS ARRIVAL-TIME; INVERSION; MRI; INFERENCE; MODEL; AGE;
D O I
10.3389/fnins.2021.711898
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The perfusion parameters cerebral blood flow (CBF) and arterial transit time (ATT) measured with arterial spin labeling (ASL) magnetic resonance imaging (MRI) provide valuable essentials to assess the integrity of cerebral tissue. Brain perfusion changes, due to aging, an intervention, or neurodegenerative diseases for example, could be investigated in longitudinal ASL studies with reliable ASL sequences. Generally, pseudo-continuous ASL (pCASL) is preferred because of its larger signal-to-noise ratio (SNR) compared to pulsed ASL (PASL) techniques. Available pCASL versions differ regarding their feature details. To date only little is known about the reliability and reproducibility of CBF and ATT measures obtained with the innovative Hadamard encoded pCASL variant, especially if applied on participants in old age. Therefore, we investigated an in-house developed Hadamard encoded pCASL sequence on a group of healthy elderly at two different 3 Tesla Siemens MRI systems (Skyra and mMR Biograph) and evaluated CBF and ATT reliability and reproducibility for several regions-of-interests (ROI). Calculated within-subject coefficients of variation (wsCV) demonstrated an excellent reliability of perfusion measures, whereas ATT appeared to be even more reliable than CBF [e.g., wsCV(CBF) = 2.9% vs. wsCV(ATT) = 2.3% for a gray matter (GM) ROI on Skyra system]. Additionally, a substantial agreement of perfusion values acquired on both MRI systems with an inter-session interval of 78 +/- 17.6 days was shown by high corresponding intra-class correlation (ICC) coefficients [e.g., ICC(CBF) = 0.704 and ICC(ATT) = 0.754 for a GM ROI]. The usability of this novel Hadamard encoded pCASL sequence might improve future follow-up perfusion studies of the aging and/or diseased brain.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Pseudo-continuous arterial spin labeling at very high magnetic field (11.75 T) for high-resolution mouse brain perfusion imaging
    Duhamel, Guillaume
    Callot, Virginie
    Tachrount, Mohamed
    Alsop, David C.
    Cozzone, Patrick J.
    MAGNETIC RESONANCE IN MEDICINE, 2012, 67 (05) : 1225 - 1236
  • [42] Characterization of Skull Base Lesions Using Pseudo-Continuous Arterial Spin Labeling
    B. Geerts
    D. Leclercq
    S. Tezenas du Montcel
    B. Law-ye
    S. Gerber
    D. Bernardeschi
    D. Galanaud
    D. Dormont
    N. Pyatigorskaya
    Clinical Neuroradiology, 2019, 29 : 75 - 86
  • [43] Cerebral perfusion alterations in patients with trigeminal neuralgia as measured by pseudo-continuous arterial spin labeling
    Zhou, Qianling
    Li, Meng
    Fan, Qisen
    Chen, Feng
    Jiang, Guihua
    Wang, Tianyue
    He, Qinmeng
    Fu, Shishun
    Yin, Yi
    Lin, Jinzhi
    Yan, Jianhao
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [44] Volumetric measurement of perfusion and arterial transit delay using hadamard encoded continuous arterial spin labeling
    Dai, Weiying
    Shankaranarayanan, Ajit
    Alsop, David C.
    MAGNETIC RESONANCE IN MEDICINE, 2013, 69 (04) : 1014 - 1022
  • [45] Pseudo-continuous arterial spin labeling technique for measuring CBF dynamics with high temporal resolution
    Silva, AC
    Kim, SG
    MAGNETIC RESONANCE IN MEDICINE, 1999, 42 (03) : 425 - 429
  • [46] Model-based super-resolution reconstruction for pseudo-continuous Arterial Spin Labeling
    Beirinckx, Quinten
    Bladt, Piet
    van der Plas, Merlijn C. E.
    van Osch, Matthias J. P.
    Jeurissen, Ben
    den Dekker, Arnold J.
    Sijbers, Jan
    NEUROIMAGE, 2024, 286
  • [47] Selective multivessel labeling approach for perfusion territory imaging in pseudo-continuous arterial spin labeling
    Helle, Michael
    Ruefer, Susanne
    van Osch, Matthias J. P.
    Jansen, Olav
    Norris, David G.
    MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (01) : 214 - 219
  • [48] Longitudinal Reproducibility and Accuracy of Pseudo-Continuous Arterial Spin-labeled Perfusion MR Imaging in Typically Developing Children
    Jain, Varsha
    Duda, Jeffrey
    Avants, Brian
    Giannetta, Mariel
    Xie, Sharon X.
    Roberts, Timothy
    Detre, John A.
    Hurt, Hallam
    Wehrli, Felix W.
    Wang, Danny J. J.
    RADIOLOGY, 2012, 263 (02) : 527 - 536
  • [49] Pseudo-continuous arterial spin labeling at 7 T for human brain: Estimation and correction for off-resonance effects using a Prescan
    Luh, Wen-Ming
    Talagala, S. Lalith
    Li, Tie-Qiang
    Bandettini, Peter A.
    MAGNETIC RESONANCE IN MEDICINE, 2013, 69 (02) : 402 - 410
  • [50] Comparison of long-labeled pseudo-continuous arterial spin labeling (ASL) features between young and elderly adults: special reference to parameter selection
    Fujiwara, Yasuhiro
    Matsuda, Tsuyoshi
    Kanamoto, Masayuki
    Tsuchida, Tatsuro
    Tsuji, Kazunobu
    Kosaka, Nobuyuki
    Adachi, Toshiki
    Kimura, Hirohiko
    ACTA RADIOLOGICA, 2017, 58 (01) : 84 - 90