On the Birch-Swinnerton-Dyer quotients modulo squares

被引:67
作者
Dokchitser, Tim [1 ]
Dokchitser, Vladimir [2 ]
机构
[1] Univ Cambridge Robinson Coll, Cambridge CB3 9AN, England
[2] Univ Cambridge Gonville & Caius Coll, Cambridge CB2 1TA, England
关键词
ELLIPTIC-CURVES; SELMER GROUPS; ABELIAN-VARIETIES; ROOT NUMBERS; CONJECTURE; DERIVATIVES; VALUES; PARITY;
D O I
10.4007/annals.2010.172.567
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an abelian variety over a number field K. An identity between the L-functions L (A/K-i, s) for extensions K-i of K induces a conjectural relation between the Birch-Swinnerton-Dyer quotients. We prove these relations modulo finiteness of X, and give an analogous statement for Selmer groups. Based on this, we develop a method for determining the parity of various combinations of ranks of A over extensions of K. As one of the applications, we establish the parity conjecture for elliptic curves assuming finiteness of III(E/K(E[2]))[6(infinity)] and some restrictions on the reduction at primes above 2 and 3: the parity of the Mordell-Weil rank of E/K agrees with the parity of the analytic rank, as determined by the root number. We also prove the p-parity conjecture for all elliptic curves over and all primes p: the parities of the p(infinity)-Selmer rank and the analytic rank agree.
引用
收藏
页码:567 / 596
页数:30
相关论文
共 39 条
[1]  
[Anonymous], 1962, ANGEW MATH, DOI DOI 10.1515/CRLL.1962.211.95
[2]  
[Anonymous], 1962, PROC INT C MATH
[3]  
[Anonymous], 1977, LINEAR REPRESENTATIO
[4]  
[Anonymous], 1994, GRAD TEXTS MATH
[5]   Iwasawa's main conjecture for elliptic curves over anticyclotomic Zp-extensions [J].
Bertolini, M ;
Darmon, H .
ANNALS OF MATHEMATICS, 2005, 162 (01) :1-64
[6]  
Birch B.J., 1966, Topology, V5, P295, DOI [10.1016/0040-9383(66)90021-8, DOI 10.1016/0040-9383(66)90021-8]
[7]  
Birch B. J., 1965, P S PURE MATH, VVIII, P106
[8]   NONVANISHING THEOREMS FOR L-FUNCTIONS OF MODULAR-FORMS AND THEIR DERIVATIVES [J].
BUMP, D ;
FRIEDBERG, S ;
HOFFSTEIN, J .
INVENTIONES MATHEMATICAE, 1990, 102 (03) :543-618
[9]  
CASSELS JWS, 1965, J REINE ANGEW MATH, V217, P180
[10]  
COATES J, 2007, P LOND MATH SOC, V94, P211