Aeroelastic characteristics of functionally graded carbon nanotube-reinforced composite plates under a supersonic flow

被引:46
|
作者
Fazelzadeh, S. A. [1 ]
Pouresmaeeli, S. [1 ]
Ghavanloo, E. [1 ]
机构
[1] Shiraz Univ, Sch Mech Engn, Shiraz 7196316548, Iran
关键词
Aeroelastic characteristic; Nanocomposite; Functionally graded carbon nanotube-reinforced composite; Supersonic flow; KP-RITZ METHOD; ELASTIC PROPERTIES; CYLINDRICAL PANELS; FREE-VIBRATION; FLUTTER; STABILITY; BEHAVIOR;
D O I
10.1016/j.cma.2014.11.042
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Aeroelastic characteristics of nanocomposite plates reinforced by carbon nanotubes and subjected to supersonic flow are investigated. Here, carbon nanotube-reinforced composite plates with five different distributions of carbon nanotube are considered. The material properties are supposed to vary gradually through the thickness of the plate and the rule of mixture is applied to estimate the effective material properties of nanocomposite plate. The governing equations of nanocomposite plate are derived based on Kirchhoff's plate theory and supersonic aerodynamic pressure is approximated by the first-order piston theory. Galerkin's method is utilized to obtain the solutions of the coupled governing equations, simultaneously. The suggested model is justified by a good agreement between the results given by present model and available data in the literature. To illustrate the effects of volume fraction, aspect ratio and non-dimensional in-plane forces on the aeroelastic stability of nanocomposite plates, parametric studies have been carried out. (c) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:714 / 729
页数:16
相关论文
共 50 条
  • [1] Elastodynamic analysis of carbon nanotube-reinforced functionally graded plates
    Lei, Z. X.
    Zhang, L. W.
    Liew, K. M.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2015, 99 : 208 - 217
  • [2] Dynamic Stability of Functionally Graded Carbon Nanotube-Reinforced Composite Beams
    Ke, Liao-Liang
    Yang, Jie
    Kitipornchai, Sritawat
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2013, 20 (01) : 28 - 37
  • [3] Nonlinear cylindrical bending of functionally graded carbon nanotube-reinforced composite plates
    Kaci, Abdelhakim
    Tounsi, Abdelouahed
    Bakhti, Karima
    Bedia, El Abbas Adda
    STEEL AND COMPOSITE STRUCTURES, 2012, 12 (06) : 491 - 504
  • [4] Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments
    Shen, Hui-Shen
    COMPOSITE STRUCTURES, 2009, 91 (01) : 9 - 19
  • [5] A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates
    Karami, Behrouz
    Shahsavari, Davood
    Janghorban, Maziar
    AEROSPACE SCIENCE AND TECHNOLOGY, 2018, 82-83 : 499 - 512
  • [6] Dynamic Response of Functionally Graded Carbon Nanotube-Reinforced Hybrid Composite Plates
    Chen, Chun-Sheng
    Fung, Chin-Ping
    Wang, Hai
    Chen, Wei-Ren
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2022, 8 (01): : 182 - 195
  • [7] Critical buckling load optimization of functionally graded carbon nanotube-reinforced laminated composite quadrilateral plates
    Setoodeh, A. R.
    Shojaee, M.
    POLYMER COMPOSITES, 2018, 39 : E853 - E868
  • [8] Parametric instability of functionally graded carbon nanotube-reinforced hybrid composite plates in thermal environments
    Chen, Chun-Sheng
    Wang, Hai
    Chen, Tsyr-Jang
    Chen, Wei-Ren
    INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN, 2021, 17 (01) : 171 - 186
  • [9] Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates
    Shen, Hui-Shen
    Zhang, Chen-Li
    MATERIALS & DESIGN, 2010, 31 (07) : 3403 - 3411
  • [10] Vibration characteristics of piezoelectric functionally graded carbon nanotube-reinforced composite doubly-curved shells
    Tham, V. V.
    Tran, H. Q.
    Tu, T. M.
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2021, 42 (06) : 819 - 840