Impact of DC Side Fault Protection on Performance and Operation of Multi-Terminal DC (MTDC) Systems

被引:0
作者
Mobarrez, Maziar [1 ]
Acharya, S. [1 ]
Bhattacharya, S. [1 ]
机构
[1] North Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA
来源
2018 THIRTEENTH INTERNATIONAL CONFERENCE ON ECOLOGICAL VEHICLES AND RENEWABLE ENERGIES (EVER) | 2018年
关键词
Multi-terminal DC; MVDC; HVDC; Fault; DC Fault; DC Circuit Breaker; Protection;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
With the development of modular structured Voltage Source Converters (VSC), Multi-Terminal DC (MTDC) transmission systems have now became a feasible solution to transmit power at high voltage levels which greatly improves the electric power transmission system. The MTDC grid has lower capital costs and lower losses than an equivalent AC transmission system. Thus for long distance power transmission, MTDC grid becomes a very attractive solution. Since the MTDC network is now built based on VSCs, it automatically offers better quality of transmitted power along with more flexibility in power transmission over the conventional current source converters. However, VSC based MTDC transmission systems are vulnerable to DC side fault and often expensive DC circuit breakers are required to protect them against DC fault. In this paper, we demonstrate the effect of DC Circuit Breaker (DCCB) performance on the rating, control and operation of modular multi-level converters (MMC) inside a MTDC system. Furthermore, it is established that depending on the type of DCCBs the converter component ratings can be reduced which contributes to the overall reduction in system cost. Performance analysis has been done to investigate the fault current limiting capabilities of each of the types of DCCBs. PSCAD and real-time control hardware-in-the loop (C-HIL) simulations are used to prove the relevance of the analysis.
引用
收藏
页数:7
相关论文
共 11 条
[1]   Advanced Power Electronic Conversion and Control System for Universal and Flexible Power Management [J].
Bifaretti, Stefano ;
Zanchetta, Pericle ;
Watson, Alan ;
Tarisciotti, Luca ;
Clare, Jon C. .
IEEE TRANSACTIONS ON SMART GRID, 2011, 2 (02) :231-243
[2]  
Bucher MK, 2012, IEEE ENER CONV, P2880, DOI 10.1109/ECCE.2012.6342371
[3]  
Callavik M., 2012, HYBRID HVDC BREAKER
[4]   Control and Experiment of Pulsewidth-Modulated Modular Multilevel Converters [J].
Hagiwara, Makoto ;
Akagi, Hirofumi .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2009, 24 (07) :1737-1746
[5]   Power-electronic systems for the grid integration of renewable energy sources:: A survey [J].
Manuel Carrasco, Juan ;
Franquelo, Leopoldo G. ;
Bialasiewicz, Jan T. ;
Galvan, Eduardo ;
Portillo, Ramon ;
Martin Prats, Maria ;
Ignacio Leon, Jose ;
Moreno-Alfonso, Narciso .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2006, 53 (04) :1002-1016
[6]  
Meyer C., 2005, 40 C REC IEEE IAS AN 40 C REC IEEE IAS AN
[7]   A DC hybrid circuit breaker with ultra-fast contact opening and integrated gate-commutated thyristors (IGCTs) [J].
Meyer, JM ;
Rufer, A .
IEEE TRANSACTIONS ON POWER DELIVERY, 2006, 21 (02) :646-651
[8]  
Mobarrez M., IECON 2014 ANN C IEE IECON 2014 ANN C IEE
[9]   Multilevel voltage-source-converter topologies for industrial medium-voltage drives [J].
Rodriguez, Jose ;
Bernet, Steffen ;
Wu, Bin ;
Pontt, Jorge O. ;
Kouro, Samir .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2007, 54 (06) :2930-2945
[10]   State feedback control of multilevel inverters for DSTATCOM applications [J].
Shukla, Anshurnan ;
Ghosh, Arindam ;
Joshi, Avinash .
IEEE TRANSACTIONS ON POWER DELIVERY, 2007, 22 (04) :2409-2418