Decreased Susceptibility of Marginal Odds Ratios to Finite-sample Bias

被引:1
作者
Ross, Rachael K. [1 ]
Cole, Stephen R. [1 ]
Richardson, David B. [1 ]
机构
[1] UNC Gillings Sch Global Publ Hlth, Dept Epidemiol, Chapel Hill, NC USA
关键词
finite-sample bias; maximum likelihood; marginal; conditional; simulation; STRUCTURAL MODELS; CAUSAL INFERENCE; EVENTS; COLLAPSIBILITY; SURVIVAL; NUMBER;
D O I
10.1097/EDE.0000000000001370
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Parameters representing adjusted treatment effects may be defined marginally or conditionally on covariates. The choice between a marginal or covariate-conditional parameter should be driven by the study question. However, an unappreciated benefit of marginal estimators is a reduction in susceptibility to finite-sample bias relative to the unpenalized maximum likelihood estimator of the covariate-conditional odds ratio (OR). Using simulation, we compare the finite-sample bias of different marginal and conditional estimators of the OR. We simulated a logistic model to have 15 events per parameter and two events per parameter. We estimated the covariate-conditional OR by maximum likelihood with and without Firth's penalization. We used three estimators of the marginal OR: g-computation, inverse probability of treatment weighting, and augmented inverse probability of treatment weighting. At 15 events per parameter, as expected, all estimators were effectively unbiased. At two events per parameter, the unpenalized covariate-conditional estimator was notably biased but penalized covariate-conditional and marginal estimators exhibited minimal bias.
引用
收藏
页码:648 / 652
页数:5
相关论文
共 28 条
  • [1] An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies
    Austin, Peter C.
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2011, 46 (03) : 399 - 424
  • [2] Bias control in the analysis of case-control studies with incidence density sampling
    Cheung, Yin Bun
    Ma, Xiangmei
    Lam, K. F.
    Li, Jialiang
    Milligan, Paul
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2019, 48 (06) : 1981 - 1991
  • [3] Constructing inverse probability weights for marginal structural models
    Cole, Stephen R.
    Hernan, Miguel A.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2008, 168 (06) : 656 - 664
  • [4] Maximum Likelihood, Profile Likelihood, and Penalized Likelihood: A Primer
    Cole, Stephen R.
    Chu, Haitao
    Greenland, Sander
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2014, 179 (02) : 252 - 260
  • [5] Marginal Structural Models for Case-Cohort Study Designs to Estimate the Association of Antiretroviral Therapy Initiation With Incident AIDS or Death
    Cole, Stephen R.
    Hudgens, Michael G.
    Tien, Phyllis C.
    Anastos, Kathryn
    Kingsley, Lawrence
    Chmiel, Joan S.
    Jacobson, Lisa P.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2012, 175 (05) : 381 - 390
  • [6] Performance of logistic regression modeling: beyond the number of events per variable, the role of data structure
    Courvoisier, Delphine S.
    Combescure, Christophe
    Agoritsas, Thomas
    Gayet-Ageron, Angele
    Perneger, Thomas V.
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2011, 64 (09) : 993 - 1000
  • [7] Doubly Robust Estimation of Causal Effects
    Funk, Michele Jonsson
    Westreich, Daniel
    Wiesen, Chris
    Stuermer, Til
    Brookhart, M. Alan
    Davidian, Marie
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2011, 173 (07) : 761 - 767
  • [8] An Introduction to the Augmented Inverse Propensity Weighted Estimator
    Glynn, Adam N.
    Quinn, Kevin M.
    [J]. POLITICAL ANALYSIS, 2010, 18 (01) : 36 - 56
  • [9] Greenland S, 2000, Biostatistics, V1, P113, DOI 10.1093/biostatistics/1.1.113
  • [10] Greenland S, 1999, STAT SCI, V14, P29