Feature Denoising-based Fault Diagnosis for Rotating machinery

被引:0
|
作者
Hq, Qin [1 ]
Si, Xiao-Sheng [2 ]
Lv, Yun-Rong [1 ]
机构
[1] Guangdong Univ Petrochem Technol, Maoming, Peoples R China
[2] Rocket Force Univ Engn, Dept Automat, Xian, Peoples R China
来源
2020 35TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC) | 2020年
关键词
Fault diagnosis; Empirical mode decomposition; Variational mode decomposition; Feature denoising; Random forests;
D O I
10.1109/YAC51587.2020.9337702
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Machinery health condition identification is crucial to reduce machine downtime and ensure its normal and continuous operation. This study proposes a feature denoising-based fault diagnosis method for rotating machinery. In the proposed method, raw signals are firstly decomposed into several subsignals of different frequency bands using the empirical mode decomposition. Based on these subsignals, multiple fault features are extracted. Then, variational mode decomposition (VMD)-based feature denoising technique is used to process the obtained features. Finally, a random forest classifier is applied to identify different machinery faults. Experimental results show that the VMD-based feature denoising approach can effectively remove the noise data and largely improve the classification performance.
引用
收藏
页码:284 / 287
页数:4
相关论文
共 50 条
  • [1] Fault diagnosis of rotating machinery based on DVMD denoising
    Yin X.-L.
    Mu Z.-L.
    Wang Y.-Q.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2022, 39 (07): : 1324 - 1334
  • [2] Fault diagnosis method of rotating machinery based on stacked denoising autoencoder
    Chen, Zhouliang
    Li, Zhinong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (06) : 3443 - 3449
  • [3] Fault Diagnosis of Rotating Machinery Based on Wavelet Domain Denoising and Metric Distance
    Su, Naiquan
    Li, Xiao
    Zhang, Qinghua
    IEEE ACCESS, 2019, 7 : 73262 - 73270
  • [4] Fault Diagnosis of Rotating Machinery Based on Wasserstein Distance and Feature Selection
    Ferracuti, Francesco
    Freddi, Alessandro
    Monteriu, Andrea
    Romeo, Luca
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (03) : 1997 - 2007
  • [5] Feature Extraction Based on DWT and CNN for Rotating Machinery Fault Diagnosis
    Xie, Yuan
    Zhang, Tao
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 3861 - 3866
  • [6] Approximate entropy as a nonlinear feature parameter for fault diagnosis in rotating machinery
    He, Yongyong
    Huang, Jun
    Zhang, Bo
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2012, 23 (04)
  • [7] A Rotating Machinery Fault Diagnosis Method Based on Feature Learning of Thermal Images
    Jia, Zhen
    Liu, Zhenbao
    Vong, Chi-Man
    Pecht, Michael
    IEEE ACCESS, 2019, 7 : 12348 - 12359
  • [8] Feature Extraction Method for Fault Diagnosis of Rotating Machinery Based on Wavelet and LLE
    Zhang, Guangtao
    Cheng, Yuanchu
    Wang, Xingfang
    Lu, Na
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON ELECTRONIC, MECHANICAL, INFORMATION AND MANAGEMENT SOCIETY (EMIM), 2016, 40 : 1181 - 1185
  • [9] Fault Diagnosis Approach for Rotating Machinery Based on Feature Importance Ranking and Selection
    Yuan, Zong
    Zhou, Taotao
    Liu, Jie
    Zhang, Changhe
    Liu, Yong
    SHOCK AND VIBRATION, 2021, 2021
  • [10] Fault diagnosis of rotating machinery based on empirical mode decomposition and fractal feature parameter classification
    Huang, Jiangtao
    Cao, Xiaowen
    Li, Wujin
    ADVANCED MEASUREMENT AND TEST, PARTS 1 AND 2, 2010, 439-440 : 658 - +