Retrieval of cloud properties from thermal infrared radiometry using convolutional neural network

被引:28
作者
Wang, Quan [1 ]
Zhou, Chen [1 ,2 ,7 ]
Zhuge, Xiaoyong [3 ]
Liu, Chao [4 ,5 ]
Weng, Fuzhong [6 ]
Wang, Minghuai [1 ,2 ]
机构
[1] Nanjing Univ, Sch Atmospher Sci, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Joint Int Res Lab Atmospher & Earth Syst Sci, Nanjing 210023, Peoples R China
[3] Nanjing Joint Inst Atmospher Sci, Key Lab Transportat Meteorol China Meteorol Adm, Nanjing 210041, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteorol, Nanjing 210044, Peoples R China
[5] Nanjing Univ Informat Sci & Technol, Sch Atmospher Phys, Key Lab Aerosol Cloud Precipitat China Meteorol Ad, Nanjing 210044, Peoples R China
[6] Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing 100081, Peoples R China
[7] Nanjing Univ, Inst Climate & Global Change Res, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Cloud optical properties; Convolutional neural network; Remote sensing; Diurnal cycle; OPTIMAL ESTIMATION ALGORITHM; MICROPHYSICAL PROPERTIES; RADIATIVE PROPERTIES; OPTICAL-THICKNESS; LIGHT-SCATTERING; CIRRUS CLOUDS; TOP PRESSURE; WATER-VAPOR; ICE CLOUDS; SOLAR;
D O I
10.1016/j.rse.2022.113079
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, a deep learning algorithm is developed to consistently retrieve the daytime and nighttime cloud properties from passive satellite observations without auxiliary atmospheric parameters. The algorithm involves the thermal infrared (TIR) radiances, viewing geometry, and altitude into a convolutional neural network (denoted as TIR-CNN), and retrieves the cloud mask, cloud optical thickness (COT), effective particle radius (CER), and cloud top height (CTH) simultaneously. The TIR-CNN model is trained using daytime Moderate Resolution Imaging Spectroradiometer (MODIS) products during a full year, and the results are validated and evaluated using passive and active products observed in independent years. The evaluation results show that the cloud properties retrieved by the TIR-CNN are well consistent with all available MODIS day-time products (cloud mask, COT, CER, and CTH) and night-time products (cloud mask and CTH). The retrieved COT and CTH also show good agreements with active sensors for both daytime and nighttime, indicating that the algorithm performs stably in the diurnal cycle.
引用
收藏
页数:15
相关论文
共 64 条
  • [21] Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS
    King, MD
    Menzel, WP
    Kaufman, YJ
    Tanré, D
    Gao, BC
    Platnick, S
    Ackerman, SA
    Remer, LA
    Pincus, R
    Hubanks, PA
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (02): : 442 - 458
  • [22] REMOTE-SENSING OF CLOUD, AEROSOL, AND WATER-VAPOR PROPERTIES FROM THE MODERATE RESOLUTION IMAGING SPECTROMETER (MODIS)
    KING, MD
    KAUFMAN, YJ
    MENZEL, WP
    TANRE, D
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1992, 30 (01): : 2 - 27
  • [23] Kingma D.P., 2014, ARXIV 14126980 CS
  • [24] Comparison of Cloud Properties from Himawari-8 and FengYun-4A Geostationary Satellite Radiometers with MODIS Cloud Retrievals
    Lai, Ruize
    Teng, Shiwen
    Yi, Bingqi
    Letu, Husi
    Min, Min
    Tang, Shihao
    Liu, Chao
    [J]. REMOTE SENSING, 2019, 11 (14)
  • [25] Country-wide high-resolution vegetation height mapping with Sentinel-2
    Lang, Nico
    Schindler, Konrad
    Wegner, Jan Dirk
    [J]. REMOTE SENSING OF ENVIRONMENT, 2019, 233
  • [26] Reconstruction of Cloud Vertical Structure With a Generative Adversarial Network
    Leinonen, Jussi
    Guillaume, Alexandre
    Yuan, Tianle
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (12) : 7035 - 7044
  • [27] High-resolution retrieval of cloud microphysical properties and surface solar radiation using Himawari-8/AHI next-generation geostationary satellite
    Letu, Husi
    Yang, Kun
    Nakajima, Takashi Y.
    Ishimoto, Hiroshi
    Nagao, Takashi M.
    Riedi, Jerome
    Baran, Anthony J.
    Ma, Run
    Wang, Tianxing
    Shang, Huazhe
    Khatri, Pradeep
    Chen, Liangfu
    Shi, Chunxiang
    Shi, Jiancheng
    [J]. REMOTE SENSING OF ENVIRONMENT, 2020, 239
  • [28] Spatiotemporal imputation of MAIAC AOD using deep learning with downscaling
    Li, Lianfa
    Franklin, Meredith
    Girguis, Mariam
    Lurmann, Frederick
    Wu, Jun
    Pavlovic, Nathan
    Breton, Carrie
    Gilliland, Frank
    Habre, Rima
    [J]. REMOTE SENSING OF ENVIRONMENT, 2020, 237
  • [29] Added value of far-infrared radiometry for remote sensing of ice clouds
    Libois, Quentin
    Blanchet, Jean-Pierre
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2017, 122 (12) : 6541 - 6564
  • [30] Long J., 2015, P IEEE C COMP VIS PA, P3431