Retrieval of cloud properties from thermal infrared radiometry using convolutional neural network

被引:28
作者
Wang, Quan [1 ]
Zhou, Chen [1 ,2 ,7 ]
Zhuge, Xiaoyong [3 ]
Liu, Chao [4 ,5 ]
Weng, Fuzhong [6 ]
Wang, Minghuai [1 ,2 ]
机构
[1] Nanjing Univ, Sch Atmospher Sci, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Joint Int Res Lab Atmospher & Earth Syst Sci, Nanjing 210023, Peoples R China
[3] Nanjing Joint Inst Atmospher Sci, Key Lab Transportat Meteorol China Meteorol Adm, Nanjing 210041, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteorol, Nanjing 210044, Peoples R China
[5] Nanjing Univ Informat Sci & Technol, Sch Atmospher Phys, Key Lab Aerosol Cloud Precipitat China Meteorol Ad, Nanjing 210044, Peoples R China
[6] Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing 100081, Peoples R China
[7] Nanjing Univ, Inst Climate & Global Change Res, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Cloud optical properties; Convolutional neural network; Remote sensing; Diurnal cycle; OPTIMAL ESTIMATION ALGORITHM; MICROPHYSICAL PROPERTIES; RADIATIVE PROPERTIES; OPTICAL-THICKNESS; LIGHT-SCATTERING; CIRRUS CLOUDS; TOP PRESSURE; WATER-VAPOR; ICE CLOUDS; SOLAR;
D O I
10.1016/j.rse.2022.113079
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, a deep learning algorithm is developed to consistently retrieve the daytime and nighttime cloud properties from passive satellite observations without auxiliary atmospheric parameters. The algorithm involves the thermal infrared (TIR) radiances, viewing geometry, and altitude into a convolutional neural network (denoted as TIR-CNN), and retrieves the cloud mask, cloud optical thickness (COT), effective particle radius (CER), and cloud top height (CTH) simultaneously. The TIR-CNN model is trained using daytime Moderate Resolution Imaging Spectroradiometer (MODIS) products during a full year, and the results are validated and evaluated using passive and active products observed in independent years. The evaluation results show that the cloud properties retrieved by the TIR-CNN are well consistent with all available MODIS day-time products (cloud mask, COT, CER, and CTH) and night-time products (cloud mask and CTH). The retrieved COT and CTH also show good agreements with active sensors for both daytime and nighttime, indicating that the algorithm performs stably in the diurnal cycle.
引用
收藏
页数:15
相关论文
共 64 条
  • [1] Bulk scattering properties for the remote sensing of ice clouds. Part II: Narrowband models
    Baum, BA
    Yang, P
    Heymsfield, AJ
    Platnick, S
    King, MD
    Hu, YX
    Bedka, ST
    [J]. JOURNAL OF APPLIED METEOROLOGY, 2005, 44 (12): : 1896 - 1911
  • [2] MODIS Cloud-Top Property Refinements for Collection 6
    Baum, Bryan A.
    Menzel, W. Paul
    Frey, Richard A.
    Tobin, David C.
    Holz, Robert E.
    Ackerman, Steve A.
    Heidinger, Andrew K.
    Yang, Ping
    [J]. JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2012, 51 (06) : 1145 - 1163
  • [3] Boucher O, 2014, CLIMATE CHANGE 2013: THE PHYSICAL SCIENCE BASIS, P571, DOI 10.1017/cbo9781107415324.016
  • [4] Multitask learning
    Caruana, R
    [J]. MACHINE LEARNING, 1997, 28 (01) : 41 - 75
  • [5] Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans
    Cho, Hyoun-Myoung
    Zhang, Zhibo
    Meyer, Kerry
    Lebsock, Matthew
    Platnick, Steven
    Ackerman, Andrew S.
    Di Girolamo, Larry
    C-Labonnote, Laurent
    Cornet, Celine
    Riedi, Jerome
    Holz, Robert E.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2015, 120 (09) : 4132 - 4154
  • [6] Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds
    Delanoe, Julien
    Hogan, Robin J.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
  • [7] Ice cloud backscatter study and comparison with CALIPSO and MODIS satellite data
    Ding, Jiachen
    Yang, Ping
    Holz, Robert E.
    Platnick, Steven
    Meyer, Kerry G.
    Vaughan, Mark A.
    Hu, Yongxiang
    King, Michael D.
    [J]. OPTICS EXPRESS, 2016, 24 (01): : 620 - 636
  • [8] Split-window retrieval of particle size and optical depth in contrails located above horixontally inhomogeneous ice clouds
    Duda, DP
    Spinhirne, JD
    [J]. GEOPHYSICAL RESEARCH LETTERS, 1996, 23 (25) : 3711 - 3714
  • [9] Cirrus Horizontal Heterogeneity and 3-D Radiative Effects on Cloud Optical Property Retrievals From MODIS Near to Thermal Infrared Channels as a Function of Spatial Resolution
    Fauchez, T.
    Platnick, S.
    Sourdeval, O.
    Wang, C.
    Meyer, K.
    Cornet, C.
    Szczap, F.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2018, 123 (19) : 11141 - 11153
  • [10] Diurnal Variation of Tropical Ice Cloud Microphysics: Evidence from Global Precipitation Measurement Microwave Imager Polarimetric Measurements
    Gong, Jie
    Zeng, Xiping
    Wu, Dong L.
    Li, Xiaowen
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (02) : 1185 - 1193