Parameter derivatives of the generalized hypergeometric function

被引:7
作者
Fejzullahu, Bujar Xh. [1 ]
机构
[1] Univ Prishtina, Fac Math & Sci, Mother Teresa 5, Prishtine 10000, Kosovo
关键词
Generalized hypergeometric function; ORTHOGONAL POLYNOMIALS; REPRESENTATIONS;
D O I
10.1080/10652469.2017.1362635
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the parameter derivatives to any order of the generalized hypergeometric function as well as for its various special cases are obtained.
引用
收藏
页码:781 / 788
页数:8
相关论文
共 50 条
[21]   A generalized hypergeometric function method for axisymmetric vibration analysis of a piezoelectric actuator [J].
Li, Yong-Dong ;
Lee, Kang Yong ;
Zhang, Nan .
EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2012, 31 (01) :110-116
[22]   Certain subclasses of meromorphically multivalent functions associated with generalized hypergeometric function [J].
Aouf, M. K. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (03) :494-509
[23]   Some subclasses of meromorphically multivalent functions associated with the generalized hypergeometric function [J].
Wang, Zhi-Gang ;
Jiang, Yue-Ping ;
Srivastava, H. M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (04) :571-586
[24]   Connections Between the Generalized Marcum Q-Function and a Class of Hypergeometric Functions [J].
Morales-Jimenez, David ;
Lopez-Martinez, F. Javier ;
Martos-Naya, Eduardo ;
Paris, Jose F. ;
Lozano, Angel .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (02) :1077-1082
[25]   Two New Subclass of Meromorphically Multivalent Functions Associated with the Generalized Hypergeometric Function [J].
Liu, Ming-Sheng ;
Song, Nian-Sheng .
SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2010, 34 (04) :705-727
[26]   Connection matrices associated with the generalized hypergeometric function 3F2 [J].
Mimachi, Katsuhisa .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2008, 51 (01) :107-133
[27]   Log-concavity and Turan-type inequalities for the generalized hypergeometric function [J].
Kalmykov, S. I. ;
Karp, D. B. .
ANALYSIS MATHEMATICA, 2017, 43 (04) :567-580
[28]   A relativistic hypergeometric function [J].
Ruijsenaars, SNM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 178 (1-2) :393-417
[29]   Some special cases of the generalized hypergeometric function F-q+1(q) [J].
Krupnikov, ED ;
Kolbig, KS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 78 (01) :79-95
[30]   Asymptotic expansion of the generalized hypergeometric function pFq(z) as z →∞ for p < q [J].
Volkmer, Hans .
ANALYSIS AND APPLICATIONS, 2023, 21 (02) :535-545