Post-transcriptional knowledge in pathway analysis increases the accuracy of phenotypes classification

被引:28
作者
Alaimo, Salvatore [2 ]
Giugno, Rosalba [1 ]
Acunzo, Mario [3 ]
Veneziano, Dario [3 ]
Ferro, Alfredo [2 ]
Pulvirenti, Alfredo [2 ]
机构
[1] Univ Verona, Dept Comp Sci, Verona, Italy
[2] Univ Catania, Dept Clin & Expt Med, Catania, Italy
[3] Ohio State Univ, Ctr Comprehens Canc, Dept Mol Virol Immunol & Med Genet, Columbus, OH 43210 USA
关键词
pathway analysis; microRNAs; phenotype classification; RNA-Seq; EXPRESSION DATA; GENE-ONTOLOGY; MICRORNA; MIRBASE; CANCER; TOOLS; SETS;
D O I
10.18632/oncotarget.9788
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Motivation: Prediction of phenotypes from high-dimensional data is a crucial task in precision biology and medicine. Many technologies employ genomic biomarkers to characterize phenotypes. However, such elements are not sufficient to explain the underlying biology. To improve this, pathway analysis techniques have been proposed. Nevertheless, such methods have shown lack of accuracy in phenotypes classification. Results: Here we propose a novel methodology called MITHrIL (Mirna enrIched paTHway Impact anaLysis) for the analysis of signaling pathways, which extends the work of Tarca et al., 2009. MITHrIL augments pathways with missing regulatory elements, such as microRNAs, and their interactions with genes. The method takes as input the expression values of genes and/or microRNAs and returns a list of pathways sorted according to their degree of deregulation, together with the corresponding statistical significance (p-values). Our analysis shows that MITHrIL outperforms its competitors even in the worst case. In addition, our method is able to correctly classify sets of tumor samples drawn from TCGA. Availability: MITHrIL is freely available at the following URL: http://alpha.dmi.unict.it/mithril/
引用
收藏
页码:54572 / 54582
页数:11
相关论文
共 46 条
[1]   A general modular framework for gene set enrichment analysis [J].
Ackermann, Marit ;
Strimmer, Korbinian .
BMC BIOINFORMATICS, 2009, 10
[2]  
Acunzo Mario, 2015, Adv Biol Regul, V57, P1, DOI 10.1016/j.jbior.2014.09.013
[3]  
[Anonymous], 2001, Introduction to algorithms
[4]   GOstat: find statistically overrepresented Gene Ontologies within a group of genes [J].
Beissbarth, T ;
Speed, TP .
BIOINFORMATICS, 2004, 20 (09) :1464-1465
[5]  
Benjamini Y, 2001, ANN STAT, V29, P1165
[6]   Characterizing gene sets with FuncAssociate [J].
Berriz, GF ;
King, OD ;
Bryant, B ;
Sander, C ;
Roth, FP .
BIOINFORMATICS, 2003, 19 (18) :2502-2504
[7]   Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia [J].
Calin, GA ;
Dumitru, CD ;
Shimizu, M ;
Bichi, R ;
Zupo, S ;
Noch, E ;
Aldler, H ;
Rattan, S ;
Keating, M ;
Rai, K ;
Rassenti, L ;
Kipps, T ;
Negrini, M ;
Bullrich, F ;
Croce, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (24) :15524-15529
[8]   Wiring miRNAs to pathways: a topological approach to integrate miRNA and mRNA expression profiles [J].
Calura, Enrica ;
Martini, Paolo ;
Sales, Gabriele ;
Beltrame, Luca ;
Chiorino, Giovanna ;
D'Incalci, Maurizio ;
Marchini, Sergio ;
Romualdi, Chiara .
NUCLEIC ACIDS RESEARCH, 2014, 42 (11) :e96
[9]   GeneMerge - post-genomic analysis, data mining, and hypothesis testing [J].
Castillo-Davis, CI ;
Hartl, DL .
BIOINFORMATICS, 2003, 19 (07) :891-892
[10]   Pathway Commons, a web resource for biological pathway data [J].
Cerami, Ethan G. ;
Gross, Benjamin E. ;
Demir, Emek ;
Rodchenkov, Igor ;
Babur, Oezguen ;
Anwar, Nadia ;
Schultz, Nikolaus ;
Bader, Gary D. ;
Sander, Chris .
NUCLEIC ACIDS RESEARCH, 2011, 39 :D685-D690