High-performance in n-type PbTe-based thermoelectric materials achieved by synergistically dynamic doping and energy filtering

被引:204
作者
Liu, Hang-Tian [1 ]
Sun, Qiang [2 ,3 ]
Zhong, Yan [1 ]
Deng, Qian [1 ]
Gan, Lin [1 ]
Lv, Fang-Lin [1 ]
Shi, Xiao-Lei [2 ,4 ,5 ]
Chen, Zhi-Gang [4 ,5 ]
Ang, Ran [1 ,6 ]
机构
[1] Sichuan Univ, Inst Nucl Sci & Technol, Minist Educ, Key Lab Radiat Phys & Technol, Chengdu 610064, Peoples R China
[2] Univ Queensland, Sch Mech & Min Engn, Brisbane, Qld 4072, Australia
[3] Univ Queensland, Ctr Microscopy & Microanal, Brisbane, Qld 4072, Australia
[4] Univ Southern Queensland, Ctr Future Mat, Springfield Cent, Qld 4300, Australia
[5] Queensland Univ Technol, Sch Chem & Phys, Brisbane, Qld, Australia
[6] Sichuan Univ, Inst New Energy & Low Carbon Technol, Chengdu 610065, Peoples R China
基金
澳大利亚研究理事会;
关键词
Thermoelectric; N-type PbTe; Ag2Te; Dynamic doping; Coherent interfaces; Energy filtering; BAND;
D O I
10.1016/j.nanoen.2021.106706
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of n-type high-performance PbTe thermoelectric materials for matching its p-type counterparts is an urgent matter to expand its practical applications. Here, we introduce Ag2Te into n-type Pb0.975Cr0.025Te for achieving a high peak figure of merit of 1.5 at 773 K. Such a high value is attributed to the synergistic optimization of carrier and phonon transports by Ag2Te introducing and the dynamic doping of Ag. From the detailed structure and property analysis, we found that Ag2Te nanoprecipitates establish coherent interfaces and hence potential barriers with the matrix to induce energy-dependent carrier scattering and maintain relatively high carrier mobility, leading to an optimal electrical-transport properties over a wide temperature range. Moreover, we employ comprehensive electron microscopy investigations and approximate Debye-Callaway model to reveal the origin of the significantly reduced lattice thermal conductivity in Ag2Te-alloyed Pb0.975Cr0.025Te. The strategies used here provide an effective method for designing high-performance thermoelectric material systems.
引用
收藏
页数:9
相关论文
共 50 条
[1]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[2]   Entropically Stabilized Local Dipole Formation in Lead Chalcogenides [J].
Bozin, Emil S. ;
Malliakas, Christos D. ;
Souvatzis, Petros ;
Proffen, Thomas ;
Spaldin, Nicola A. ;
Kanatzidis, Mercouri G. ;
Billinge, Simon J. L. .
SCIENCE, 2010, 330 (6011) :1660-1663
[3]   EFFECT OF POINT IMPERFECTIONS ON LATTICE THERMAL CONDUCTIVITY [J].
CALLAWAY, J ;
VONBAEYER, HC .
PHYSICAL REVIEW, 1960, 120 (04) :1149-1154
[4]   ELECTRONIC TRANSPORT IN SEMIMETALLIC CERIUM SULFIDE [J].
CUTLER, M ;
LEAVY, JF ;
FITZPATRICK, RL .
PHYSICAL REVIEW, 1964, 133 (4A) :1143-+
[5]   EFFECTS OF DISLOCATIONS ON MOBILITIES IN SEMICONDUCTORS [J].
DEXTER, DL ;
SEITZ, F .
PHYSICAL REVIEW, 1952, 86 (06) :964-965
[6]   Doping semiconductor nanocrystals [J].
Erwin, SC ;
Zu, LJ ;
Haftel, MI ;
Efros, AL ;
Kennedy, TA ;
Norris, DJ .
NATURE, 2005, 436 (7047) :91-94
[7]   Energy Filtering of Charge Carriers: Current Trends, Challenges, and Prospects for Thermoelectric Materials [J].
Gayner, Chhatrasal ;
Amouyal, Yaron .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (18)
[8]   Thermoelectricity for IoT - A review [J].
Haras, Maciej ;
Skotnicki, Thomas .
NANO ENERGY, 2018, 54 :461-476
[9]   Advances in thermoelectric materials research: Looking back and moving forward [J].
He, Jian ;
Tritt, Terry M. .
SCIENCE, 2017, 357 (6358)
[10]   Resonant levels in bulk thermoelectric semiconductors [J].
Heremans, Joseph P. ;
Wiendlocha, Bartlomiej ;
Chamoire, Audrey M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) :5510-5530