Performance Evaluation of Deep Neural Networks in Detecting Loop Closure of Visual SLAM

被引:10
作者
Chen, Yong [1 ]
Zuo, Lin [1 ]
Zhang, ChangHua [1 ]
Liu, FengLian [2 ]
Wu, YunFeng [1 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[2] State Grid Sichuan Elect Power Res Inst, Chengdu, Peoples R China
来源
2019 11TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC 2019), VOL 2 | 2019年
基金
美国国家科学基金会;
关键词
mobile robot; visual SLAM; loop closure detection; deep learning; REPRESENTATION;
D O I
10.1109/IHMSC.2019.10136
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper concerns the problem of Loop Closure Detection (LCD) of visual Simultaneous Localization and Mapping (SLAM). The LCD is a crucial model to reduce the accumulative error in visual SLAM. The traditional LCD methods use hand-crafted features, which ignore useful information. We propose a LCD method based on Convolutional Neural Networks (CNNs) without any manual intervention for visual features. We compare and analyze several popular deep neural networks models for LCD. Two open datasets has been used to evaluate the performance of LCD in terms of mean-per-class accuracy. The results show that deep neural networks are feasible for LCD and the ResNet50 network outperforms the other deep neural networks.
引用
收藏
页码:171 / 175
页数:5
相关论文
共 22 条
[1]  
[Anonymous], 2015, Arxiv.Org, DOI DOI 10.3389/FPSYG.2013.00124
[2]   CNN Feature Boosted SeqSLAM for Real-Time Loop Closure Detection [J].
Bai Dongdong ;
Wang Chaoqun ;
Zhang Bo ;
Yi Xiaodong ;
Yang Xuejun .
CHINESE JOURNAL OF ELECTRONICS, 2018, 27 (03) :488-499
[3]   SURF: Speeded up robust features [J].
Bay, Herbert ;
Tuytelaars, Tinne ;
Van Gool, Luc .
COMPUTER VISION - ECCV 2006 , PT 1, PROCEEDINGS, 2006, 3951 :404-417
[4]   PCANet: A Simple Deep Learning Baseline for Image Classification? [J].
Chan, Tsung-Han ;
Jia, Kui ;
Gao, Shenghua ;
Lu, Jiwen ;
Zeng, Zinan ;
Ma, Yi .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) :5017-5032
[5]  
Csurka G., 2004, WORKSHOP STAT LEARNI, P1, DOI DOI 10.1234/12345678
[6]   FAB-MAP: Probabilistic localization and mapping in the space of appearance [J].
Cummins, Mark ;
Newman, Paul .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2008, 27 (06) :647-665
[7]   Unsupervised learning to detect loops using deep neural networks for visual SLAM system [J].
Gao, Xiang ;
Zhang, Tao .
AUTONOMOUS ROBOTS, 2017, 41 (01) :1-18
[8]  
Girija Sanjay Surendranath, 2016, Software available from tensorflow org
[9]  
Hou Y, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, P2238, DOI 10.1109/ICInfA.2015.7279659
[10]   Caffe: Convolutional Architecture for Fast Feature Embedding [J].
Jia, Yangqing ;
Shelhamer, Evan ;
Donahue, Jeff ;
Karayev, Sergey ;
Long, Jonathan ;
Girshick, Ross ;
Guadarrama, Sergio ;
Darrell, Trevor .
PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, :675-678