A PDE approach to jump-diffusions

被引:11
|
作者
Carr, Peter [2 ]
Cousot, Laurent [1 ]
机构
[1] BNP Paribas, London NW1 6AA, England
[2] NYU, Courant Inst, New York, NY 10012 USA
关键词
Martingales; Jump-diffusion processes; Partial differential equations; Calibration; Options; BROWNIAN-TIME PROCESSES; OPTION; MARTINGALES; CONNECTION; PRICES;
D O I
10.1080/14697688.2010.531042
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper, we show that the calibration to an implied volatility surface and the pricing of contingent claims can be as simple in a jump-diffusion framework as in a diffusion framework. Indeed, after defining the jump densities as those of diffusions sampled at independent and exponentially distributed random times, we show that the forward and backward Kolmogorov equations can be transformed into partial differential equations. This enables us to (i) derive Dupire-like equations [Risk Mag., 1994, 7(1), 18-20] for coefficients characterizing these jump-diffusions; (ii) describe sufficient conditions for the processes they induce to be calibrated martingales; and (iii) price path-independent claims using backward partial differential equations. This paper also contains an example of calibration to the SP 500 market.
引用
收藏
页码:33 / 52
页数:20
相关论文
共 50 条
  • [11] Coupling for Markovian switching jump-diffusions
    Fu-bao Xi
    Applied Mathematics-A Journal of Chinese Universities, 2013, 28 : 204 - 216
  • [12] Coupling for Markovian switching jump-diffusions
    XI Fu-bao
    Applied Mathematics:A Journal of Chinese Universities, 2013, (02) : 204 - 216
  • [13] Coupling for Markovian switching jump-diffusions
    Xi Fu-bao
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2013, 28 (02) : 204 - 216
  • [14] On the stability of jump-diffusions with Markovian switching
    Xi, Fubao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (01) : 588 - 600
  • [15] Invariant manifolds with boundary for jump-diffusions
    Filipovic, Damir
    Tappe, Stefan
    Teichmann, Josef
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 : 1 - 28
  • [16] On the conservativeness and the recurrence of symmetric jump-diffusions
    Masamune, Jun
    Uemura, Toshihiro
    Wang, Jian
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (12) : 3984 - 4008
  • [17] POLYNOMIAL JUMP-DIFFUSIONS ON THE UNIT SIMPLEX
    Cuchiero, Christa
    Larsson, Martin
    Svaluto-Ferro, Sara
    ANNALS OF APPLIED PROBABILITY, 2018, 28 (04): : 2451 - 2500
  • [18] Coupling for Markovian switching jump-diffusions
    XI Fu-bao
    AppliedMathematics:AJournalofChineseUniversities(SeriesB), 2013, 28 (02) : 204 - 216
  • [19] Dissecting skewness under affine jump-diffusions
    Zhen, Fang
    Zhang, Jin E.
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2020, 24 (04):
  • [20] The Perpetual American Put Option for Jump-Diffusions
    Aase, Knut K.
    ENERGY, NATURAL RESOURCES AND ENVIRONMENTAL ECONOMICS, 2010, : 493 - 507