Weyl-Pedersen calculus for some semidirect products of nilpotent Lie groups

被引:0
作者
Beltita, Ingrid [1 ]
Beltita, Daniel [1 ]
Pascu, Mihai [1 ,2 ]
机构
[1] Acad Romana, Inst Math Simion Stoilow, Bucharest, Romania
[2] Univ Petrol Gaze Ploiesti, Ploiesti, Romania
关键词
Nilpotent Lie group; Coadjoint orbit; QUANTIZATION; ALGEBRAS;
D O I
10.1016/j.difgeo.2015.03.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For certain nilpotent real Lie groups constructed as semidirect products, algebras of invariant differential operators on some coadjoint orbits are used in the study of boundedness properties of the Weyl-Pedersen calculus of their corresponding unitary irreducible representations. Our main result is applicable to all unitary irreducible representations of arbitrary 3-step nilpotent Lie groups. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:278 / 289
页数:12
相关论文
共 14 条
[1]  
Beltita I., 2013, GEOMETRIC METHODS PH, P87
[2]   Boundedness for Weyl-Pedersen Calculus on Flat Coadjoint Orbits [J].
Beltita, Ingrid ;
Beltita, Daniel .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (03) :787-816
[3]   On Kirillov's lemma for nilpotent Lie algebras [J].
Beltita, Ingrid ;
Beltita, Daniel .
JOURNAL OF ALGEBRA, 2015, 427 :85-103
[4]   Modulation Spaces of Symbols for Representations of Nilpotent Lie Groups [J].
Beltita, Ingrid ;
Beltita, Daniel .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (02) :290-319
[5]   Characteristically nilpotent Lie algebras and symplectic structures [J].
Burde, Dietrich .
FORUM MATHEMATICUM, 2006, 18 (05) :769-787
[6]   Weyl quantization for semidirect products [J].
Cahen, Benjamin .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2007, 25 (02) :177-190
[7]   A CONTRACTION OF THE PRINCIPAL SERIES BY BEREZIN-WEYL QUANTIZATION [J].
Cahen, Benjamin .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2013, 43 (02) :417-441
[8]  
Corwin Lawrence J., 1990, Cambridge Studies in Advanced Mathematics, V18
[9]   A canonical compatible metric for geometric structures on nilmanifolds [J].
Lauret, Jorge .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2006, 30 (02) :107-138
[10]  
Lauret Jorge., 2005, DIFFER GEOM APPL, P79