Weyl-Pedersen calculus for some semidirect products of nilpotent Lie groups
被引:0
|
作者:
Beltita, Ingrid
论文数: 0引用数: 0
h-index: 0
机构:
Acad Romana, Inst Math Simion Stoilow, Bucharest, RomaniaAcad Romana, Inst Math Simion Stoilow, Bucharest, Romania
Beltita, Ingrid
[1
]
Beltita, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Acad Romana, Inst Math Simion Stoilow, Bucharest, RomaniaAcad Romana, Inst Math Simion Stoilow, Bucharest, Romania
Beltita, Daniel
[1
]
Pascu, Mihai
论文数: 0引用数: 0
h-index: 0
机构:
Acad Romana, Inst Math Simion Stoilow, Bucharest, Romania
Univ Petrol Gaze Ploiesti, Ploiesti, RomaniaAcad Romana, Inst Math Simion Stoilow, Bucharest, Romania
Pascu, Mihai
[1
,2
]
机构:
[1] Acad Romana, Inst Math Simion Stoilow, Bucharest, Romania
For certain nilpotent real Lie groups constructed as semidirect products, algebras of invariant differential operators on some coadjoint orbits are used in the study of boundedness properties of the Weyl-Pedersen calculus of their corresponding unitary irreducible representations. Our main result is applicable to all unitary irreducible representations of arbitrary 3-step nilpotent Lie groups. (C) 2015 Elsevier B.V. All rights reserved.