Influence of sub-zero temperature on nucleation and growth of copper nanoparticles in electrochemical reactions

被引:9
作者
Zhang, Qiubo [1 ]
Wan, Jiawei [1 ,2 ]
Shangguan, Junyi [1 ,2 ]
Betzler, Sophia [1 ]
Zheng, Haimei [1 ,2 ]
机构
[1] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
关键词
CARBON-DIOXIDE; ELECTRODEPOSITION; MORPHOLOGY; REDUCTION; CATALYST; CO2;
D O I
10.1016/j.isci.2021.103289
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cu metal nanostructures have attracted wide interest of study as catalysts for CO2 reduction reaction and other applications. Controlling the structure and morphology of Cu nanostructures during synthesis is crucial for achieving desired properties. Here, we studied temperature effects on electrochemical deposition of Cu nanoparticles. We found the size, nucleation density, and crystallinity of Cu nanoparticles are strongly influenced by low temperature processing. The electrodeposition at low temperature (-20 degrees C) results in clusters of assembled small Cu nanoparticles, which is distinctly different from the large individual highly crystalline Cu nanoparticles obtained from the room temperature process. The differences in Cu nanoparticle morphology and crystallinity are attributed to the variations in reduction reaction rate and surface diffusion. The limitation of the reaction rate promotes multiple nuclei, and low surface diffusion induce spoor crystallinity. This study deepens our understanding of low-temperature effects on electrochemical processes assisting the design of diverse hierarchical catalytic materials.
引用
收藏
页数:12
相关论文
共 26 条
[1]   Jump processes in surface diffusion [J].
Antczak, Grazyna ;
Ehrlich, Gert .
SURFACE SCIENCE REPORTS, 2007, 62 (02) :39-61
[2]   Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J].
Birdja, Yuvraj Y. ;
Perez-Gallent, Elena ;
Figueiredo, Marta C. ;
Gottle, Adrien J. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
NATURE ENERGY, 2019, 4 (09) :732-745
[3]  
Caswell Hal, 2001, pi
[4]   Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4 [J].
Choi, Chungseok ;
Kwon, Soonho ;
Cheng, Tao ;
Xu, Mingjie ;
Tieu, Peter ;
Lee, Changsoo ;
Cai, Jin ;
Lee, Hyuck Mo ;
Pan, Xiaoqing ;
Duan, Xiangfeng ;
Goddard, William A., III ;
Huang, Yu .
NATURE CATALYSIS, 2020, 3 (10) :804-812
[5]   Factors controlling the electrodeposition of metal nanoparticles on pristine single walled carbon nanotubes [J].
Day, Thomas M. ;
Unwin, Patrick R. ;
Macpherson, Julie V. .
NANO LETTERS, 2007, 7 (01) :51-57
[6]   Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction [J].
De Luna, Phil ;
Quintero-Bermudez, Rafael ;
Cao-Thang Dinh ;
Ross, Michael B. ;
Bushuyev, Oleksandr S. ;
Todorovic, Petar ;
Regier, Tom ;
Kelley, Shana O. ;
Yang, Peidong ;
Sargent, Edward H. .
NATURE CATALYSIS, 2018, 1 (02) :103-110
[7]   Liquid/solid phase diagrams of binary carbonates for lithium batteries part II [J].
Ding, MS ;
Xu, K ;
Zhang, SS ;
Jow, TR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (04) :A299-A304
[8]   A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper [J].
Gattrell, M. ;
Gupta, N. ;
Co, A. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 594 (01) :1-19
[9]   Dynamic Changes in the Structure, Chemical State and Catalytic Selectivity of Cu Nanocubes during CO2 Electroreduction: Size and Support Effects [J].
Grosse, Philipp ;
Gao, Dunfeng ;
Scholten, Fabian ;
Sinev, Ilya ;
Mistry, Hemma ;
Roldan Cuenya, Beatriz .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (21) :6192-6197
[10]   Shape-Controlled Synthesis of Copper Nanocrystals in an Aqueous Solution with Glucose as a Reducing Agent and Hexadecylamine as a Capping Agent [J].
Jin, Mingshang ;
He, Guannan ;
Zhang, Hui ;
Zeng, Jie ;
Xie, Zhaoxiong ;
Xia, Younan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (45) :10560-10564