CONFIGURATION SPACES OF NON-SINGULAR CUBIC SURFACES WITH ECKARDT POINTS

被引:1
作者
Nguyen Chanh Tu [1 ]
机构
[1] Hue Univ Educ, Dept Math, Hue City, Vietnam
关键词
varieties and morphisms; special surfaces embedding moduli theory;
D O I
10.2206/kyushujm.63.83
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P-19 be the parametrizing space of cubic surfaces in P-3 The subset corresponds to non-singular cubic surfaces open in P-19 We denote by M-k subset of P-19 the subset of points corresponding to non-singular cubic surfaces in P-3 with at least k Eckardt points For every k, we determine the dimension and the number of irreducible components of M-k A non-singular cubic surface can be viewed as the blowing-up of P-2 at six points in general position A close study of the configuration of six points in P-2 enables us to describe the configuration space of points in P-19 corresponding to non-singular cubic surfaces with a given number of Eckardt points This study also provides an easy method to obtain the classification of non-singular cubic surfaces according to the number of Eckardt points, which is a well-known result
引用
收藏
页码:83 / 101
页数:19
相关论文
共 9 条
[1]  
[Anonymous], 1976, ALGEBRAIC GEOMETRY
[2]  
[Anonymous], 2013, ALGEBRAIC GEOM
[3]   CLASSIFICATION OF CUBIC SURFACES [J].
BRUCE, JW ;
WALL, CTC .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1979, 19 (APR) :245-256
[5]  
BRUNDU M, 1998, TRANSFORM GROUPS, V3, P1
[6]  
Mumford D., 1994, Geometric Invariant Theory
[7]  
Segre B., 1942, The Non-Singular Cubic Surfaces
[8]  
Tu N. C., 2005, Singul. Franco-Japonaises, V10, P373
[9]  
TU NC, 2004, KODAI MATH J, V27, P57