Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography

被引:215
|
作者
Wu, JC
Chen, IY
Sundaresan, G
Min, JJ
De, A
Qiao, JH
Fishbein, MC
Gambhir, SS
机构
[1] Stanford Univ, Dept Radiol, James H Clark Ctr, Stanford, CA 94305 USA
[2] Univ Calif Los Angeles, Sch Med, Dept Mol & Med Pharmacol, Los Angeles, CA USA
[3] Univ Calif Los Angeles, Sch Med, Crump Inst Mol Imaging, Los Angeles, CA USA
[4] Univ Calif Los Angeles, Sch Med, Dept Pathol, Los Angeles, CA 90024 USA
[5] Univ Calif Los Angeles, Sch Med, Dept Med, Div Cardiol, Los Angeles, CA 90024 USA
[6] Stanford Univ, BioX Program, Stanford, CA 94305 USA
关键词
transplantation; heart failure; genes; imaging; nuclear medicine;
D O I
10.1161/01.CIR.0000091252.20010.6E
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background-The current method of analyzing myocardial cell transplantation relies on postmortem histology. We sought to demonstrate the feasibility of monitoring transplanted cell survival in living animals using molecular imaging techniques. Methods and Results-For optical bioluminescence charged-coupled device imaging, rats (n = 20) underwent intramyocardial injection of embryonic rat H9c2 cardiomyoblasts (3 X 10(6) to 5 X 10(5)) expressing firefly luciferase (Fluc) reporter gene. Cardiac bioluminescence signals were present for more than 2 weeks with 3 X 10(6) cells: day 1 (627 000+/-15%), day 2 (346 100+/-21%), day 4 (112 800+/-20%), day 8 (78 860+/-24%), day 12 (67 780+/-12%), and day 16 (62 200+/-5% p . s(-1) . cm(2-1) . sr(-1)). For micro-positron emission tomography imaging, rats (n = 20) received cardiomyoblasts (3 X 10(6)) expressing mutant herpes simplex type 1 thymidine kinase (HSV1-sr39tk) reporter gene. Detailed tomography of transplanted cells is shown by 9-(4-[F-18]-fluoro-3-hydroxymethylbutyl)guanine ([F-18]-FHBG) reporter probe and nitrogen-13 ammonia ([N-13]-NH3) perfusion images. Within the transplanted region, there was a 4.48+/-0.71-fold increase of in vivo [F-18]-FHBG activity and a 4.01+/-0.51-fold increase of ex vivo gamma counting compared with control animals. Finally, the in vivo images of cell survival were confirmed by ex vivo autoradiography, histology, immunohistochemistry, and reporter protein assays. Conclusions-The location(s), magnitude, and survival duration of embryonic cardiomyoblasts were monitored noninvasively. With further development, molecular imaging studies should add critical insights into cardiac cell transplantation biology.
引用
收藏
页码:1302 / 1305
页数:4
相关论文
共 39 条
  • [1] Positron emission tomography imaging of cardiac reporter gene expression in living rats
    Wu, JC
    Inubushi, M
    Sundaresan, G
    Schelbert, HR
    Gambhir, SS
    CIRCULATION, 2002, 106 (02) : 180 - 183
  • [2] Application of cardiac molecular imaging using positron emission tomography in evaluation of drug and therapeutics for cardiovascular disorders
    Yoshinaga, K
    Chow, BJW
    deKemp, RA
    Thorn, S
    Ruddy, TD
    Davies, RA
    DaSilva, JN
    Beanlands, R
    CURRENT PHARMACEUTICAL DESIGN, 2005, 11 (07) : 903 - 932
  • [3] Optical imaging of reporter gene expression using a positron-emission-tomography probe
    Liu, Hongguang
    Ren, Gang
    Liu, Shuanglong
    Zhang, Xiaofen
    Chen, Luxi
    Han, Peizhen
    Cheng, Zhen
    JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (06)
  • [4] Positron Emission Tomography Imaging of Cell Trafficking: A Method of Cell Radiolabeling
    Bansal, Aditya
    Degrado, Timothy R.
    Pandey, Mukesh K.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2023, (200):
  • [5] Complementary Value of Cardiac Magnetic Resonance Imaging and Positron Emission Tomography/Computed Tomography in the Assessment of Cardiac Sarcoidosis
    Vita, Tomas
    Okada, David R.
    Veillet-Chowdhury, Mahdi
    Bravo, Paco E.
    Mullins, Erin
    Hulten, Edward
    Agrawal, Mukta
    Madan, Rachna
    Taqueti, Viviany R.
    Steigner, Michael
    Skali, Hicham
    Kwong, Raymond Y.
    Stewart, Garrick C.
    Dorbala, Sharmila
    Di Carli, Marcelo F.
    Blankstein, Ron
    CIRCULATION-CARDIOVASCULAR IMAGING, 2018, 11 (01) : e007030
  • [6] Molecular imaging of atherosclerotic lesions by positron emission tomography - can it meet the expectations?
    Brammen, Lindsay
    Steiner, Sabine
    Berent, Robert
    Sinzinger, Helmut
    VASA-EUROPEAN JOURNAL OF VASCULAR MEDICINE, 2016, 45 (02) : 125 - 132
  • [7] Noninvasive imaging of islet grafts using positron-emission tomography
    Lu, Yuxin
    Dang, Hoa
    Middleton, Blake
    Zhang, Zesong
    Washburn, Lorraine
    Stout, David B.
    Campbell-Thompson, Martha
    Atkinson, Mark A.
    Phelps, Michael
    Gambhir, Sanjiv Sam
    Tian, Jide
    Kaufman, Daniel L.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (30) : 11294 - 11299
  • [8] Micro-positron emission tomography imaging of cardiac gene expression in rats using bicistronic adenoviral vector-mediated gene delivery
    Chen, IY
    Wu, JC
    Min, JJ
    Sundaresan, G
    Lewis, X
    Liang, QW
    Herschman, HR
    Gambhir, SS
    CIRCULATION, 2004, 109 (11) : 1415 - 1420
  • [9] Cardiac Positron Emission Tomography/Computed Tomography Imaging Accurately Detects Anatomically and Functionally Significant Coronary Artery Disease
    Kajander, S.
    Joutsiniemi, E.
    Saraste, M.
    Pietila, M.
    Ukkonen, H.
    Saraste, A.
    Sipila, H. T.
    Teras, M.
    Maki, M.
    Airaksinen, J.
    Hartiala, J.
    Knuuti, J.
    CIRCULATION, 2010, 122 (06) : 603 - 613
  • [10] Positron-emission tomography molecular imaging of glia and myelin in drug discovery for multiple sclerosis
    Matthews, Paul M.
    Datta, Gourab
    EXPERT OPINION ON DRUG DISCOVERY, 2015, 10 (05) : 557 - 570