An Improved Local Ternary Pattern for Texture Classification

被引:0
作者
Shih, Huang-Chia [1 ]
Cheng, Hsu-Yung [2 ]
Fu, Jr-Chian [2 ]
机构
[1] Yuan Ze Univ, Dept Elect Engn, Taoyuan, Taiwan
[2] Natl Cent Univ, Dept Comp Sci & Informat Engn, Taoyuan, Taiwan
来源
2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2019年
关键词
Local ternary pattern; rotation invariance; scale invariance; texture classification; texture representation;
D O I
10.1109/icip.2019.8803569
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
In this study, we proposed a new operator known as the synchronized rotation local ternary pattern (SRLTP) for texture classification. The proposed SRLTP descriptor improves on the local ternary pattern (LTP) method with an additional process on the generated lower and upper LTPs. The lower and upper patterns are encoded to a rotation invariant pattern histogram and a uniform pattern histogram, respectively. Thus, the feature vector can utilize the advantages offered by the rotation invariant pattern histogram while retaining the original information in the uniform pattern histogram. Moreover, in this study, a two-dimensional discrete wavelet transform (DWT) and a discrete Fourier transform (DFT) enhanced the robustness of the texture classification. The experimental results demonstrate that the performance of the SRLTP descriptor is better than those of the existing descriptors.
引用
收藏
页码:4415 / 4418
页数:4
相关论文
共 14 条
  • [1] LIBSVM: A Library for Support Vector Machines
    Chang, Chih-Chung
    Lin, Chih-Jen
    [J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
  • [2] Learning and Recognition of Clothing Genres From Full-Body Images
    Hidayati, Shintami C.
    You, Chuang-Wen
    Cheng, Wen-Huang
    Hua, Kai-Lung
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (05) : 1647 - 1659
  • [3] Local image region description using orthogonal symmetric local ternary pattern
    Huang, Mingming
    Mu, Zhichun
    Zeng, Hui
    Huang, Shuai
    [J]. PATTERN RECOGNITION LETTERS, 2015, 54 : 56 - 62
  • [4] Liao S., 2010, Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, P1301, DOI DOI 10.1109/CVPR.2010.5539817
  • [5] A local approach based on a Local Binary Patterns variant texture descriptor for classifying pain states
    Nanni, Loris
    Brahnam, Sheryl
    Lumini, Alessandra
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (12) : 7888 - 7894
  • [6] A comparative study of texture measures with classification based on feature distributions
    Ojala, T
    Pietikainen, M
    Harwood, D
    [J]. PATTERN RECOGNITION, 1996, 29 (01) : 51 - 59
  • [7] Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    Ojala, T
    Pietikäinen, M
    Mäenpää, T
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (07) : 971 - 987
  • [8] Oxholm G, 2012, LECT NOTES COMPUT SC, V7572, P58, DOI 10.1007/978-3-642-33718-5_5
  • [9] Rotation-invariant texture classification using feature distributions
    Pietikäinen, M
    Ojala, T
    Xu, Z
    [J]. PATTERN RECOGNITION, 2000, 33 (01) : 43 - 52
  • [10] Schaffalitzky F, 2001, EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL II, PROCEEDINGS, P636, DOI 10.1109/ICCV.2001.937686