Potential Link between Cu Surface and Selective CO2 Electroreduction: Perspective on Future Electrocatalyst Designs

被引:242
作者
Tomboc, Gracita M. [1 ,2 ]
Choi, Songa [1 ,2 ]
Kwon, Taehyun [1 ,2 ]
Hwang, Yun Jeong [3 ,4 ]
Lee, Kwangyeol [1 ,2 ]
机构
[1] Korea Univ, Dept Chem, Seoul 02841, South Korea
[2] Korea Univ, Res Inst Nat Sci, Seoul 02841, South Korea
[3] Korea Inst Sci & Technol, Clean Energy Res Ctr, Seoul 02792, South Korea
[4] Yonsei Univ, Dept Chem & Biomol Engn, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
catalyst surfaces; CO2; electroreduction; copper; oxidation states; selectivity; EFFICIENT ELECTROCHEMICAL REDUCTION; REDUCED GRAPHENE OXIDE; CARBON-DIOXIDE; STABLE ELECTROREDUCTION; THEORETICAL INSIGHTS; PRODUCT SELECTIVITY; COPPER NANOCRYSTALS; C2; PRODUCTS; NANOPARTICLES; NITROGEN;
D O I
10.1002/adma.201908398
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical reduction of carbon dioxide (CO2RR) product distribution has been identified to be dependent on various surface factors, including the Cu facet, morphology, chemical states, doping, etc., which can alter the binding strength of key intermediates such as *CO and *OCCO during reduction. Therefore, in-depth knowledge of the Cu catalyst surface and identification of the active species under reaction conditions aid in designing efficient Cu-based electrocatalysts. This progress report categorizes various Cu-based electrocatalysts into four main groups, namely metallic Cu, Cu alloys, Cu compounds (Cu + non-metal), and supported Cu-based catalysts (Cu supported by carbon, metal oxides, or polymers). The detailed mechanisms for the selective CO2RR are presented, followed by recent relevant developments on the synthetic procedures for preparing Cu and Cu-based nanoparticles. Herein, the potential link between the Cu surface and CO2RR performance is highlighted, especially in terms of the chemical states, but other significant factors such as defective sites and roughened morphology of catalysts are equally considered during the discussion of current studies of CO2RR with Cu-based electrocatalysts to fully understand the origin of the significant enhancement toward C-2 formation. This report concludes by providing suggestions for future designs of highly selective and stable Cu-based electrocatalysts for CO2RR.
引用
收藏
页数:23
相关论文
共 134 条
[1]   Poly-Amide Modified Copper Foam Electrodes for Enhanced Electrochemical Reduction of Carbon Dioxide [J].
Ahn, Sunyhik ;
Klyukin, Konstantin ;
Wakeham, Russell J. ;
Rudd, Jennifer A. ;
Lewis, Aled R. ;
Alexander, Shirin ;
Carla, Francesco ;
Alexandrov, Vitaly ;
Andreoli, Enrico .
ACS CATALYSIS, 2018, 8 (05) :4132-4142
[2]   CO2 Electroreduction to Hydrocarbons on Carbon-Supported Cu Nanoparticles [J].
Baturina, Olga A. ;
Lu, Qin ;
Padilla, Monica A. ;
Xin, Le ;
Li, Wenzhen ;
Serov, Alexey ;
Artyushkova, Kateryna ;
Atanassov, Plamen ;
Xu, Feng ;
Epshteyn, Albert ;
Brintlinger, Todd ;
Schuette, Mike ;
Collins, Greg E. .
ACS CATALYSIS, 2014, 4 (10) :3682-3695
[3]   Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels [J].
Benson, Eric E. ;
Kubiak, Clifford P. ;
Sathrum, Aaron J. ;
Smieja, Jonathan M. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :89-99
[4]   Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J].
Birdja, Yuvraj Y. ;
Perez-Gallent, Elena ;
Figueiredo, Marta C. ;
Gottle, Adrien J. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
NATURE ENERGY, 2019, 4 (09) :732-745
[5]   Cu nanoparticles decorating rGO nanohybrids as electrocatalyst toward CO2 reduction [J].
Cao, Changsheng ;
Wen, Zhenhai .
JOURNAL OF CO2 UTILIZATION, 2017, 22 :231-237
[6]   Electrochemical Reduction of Carbon Dioxide to Ethane Using Nanostructured Cu2O-Derived Copper Catalyst and Palladium(II) Chloride [J].
Chen, Chung Shou ;
Wan, Jane Hui ;
Yeo, Boon Siang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (48) :26875-26882
[7]   Efficient electroreduction of CO2 to C2 products over B-doped oxide-derived copper [J].
Chen, Chunjun ;
Sun, Xiaofu ;
Lu, Lu ;
Yang, Dexin ;
Ma, Jun ;
Zhu, Qinggong ;
Qian, Qingli ;
Han, Buxing .
GREEN CHEMISTRY, 2018, 20 (20) :4579-4583
[8]   Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K [J].
Cheng, Tao ;
Xiao, Hai ;
Goddard, William A., III .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (08) :1795-1800
[9]   Electrochemical CO2 Reduction over Compressively Strained CuAg Surface Alloys with Enhanced Multi-Carbon Oxygenate Selectivity [J].
Clark, Ezra L. ;
Hahn, Christopher ;
Jaramillo, Thomas F. ;
Bell, Alexis T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (44) :15848-15857
[10]   Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide [J].
Dai, Lei ;
Qin, Qing ;
Wang, Pei ;
Zhao, Xiaojing ;
Hu, Chengyi ;
Liu, Pengxin ;
Qin, Ruixuan ;
Chen, Mei ;
Ou, Daohui ;
Xu, Chaofa ;
Mo, Shiguang ;
Wu, Binghui ;
Fu, Gang ;
Zhang, Peng ;
Zheng, Nanfeng .
SCIENCE ADVANCES, 2017, 3 (09)