The initial value problem for the compressible Navier-Stokes equations without heat conductivity

被引:7
作者
Chen, Qing [1 ]
Tan, Zhong [2 ]
Wu, Guochun [3 ]
Zou, Weiyuan [4 ]
机构
[1] Xiamen Univ Technol, Sch Appl Math, Xiamen 361024, Fujian, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[3] Huaqiao Univ, Fujian Prov Univ Key Lab Computat Sci, Sch Math Sci, Quanzhou 362021, Peoples R China
[4] Beijing Univ Chem Technol, Coll Math & Phys, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Navier-Stokes equations; Global existence; Optimal convergence rates; BOUNDARY-VALUE-PROBLEMS; LARGE-TIME BEHAVIOR; GLOBAL EXISTENCE; CONVERGENCE-RATES; CRITICAL SPACES; WEAK SOLUTIONS; DECAY; MOTION; FLOWS; SYSTEMS;
D O I
10.1016/j.jde.2019.11.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are concerned with the global existence and convergence rates of strong solutions for the compressible Navier-Stokes equations without heat conductivity in R-3. The global existence and uniqueness of strong solutions are established by the delicate energy method under the condition that the initial data are close to the constant equilibrium state in H-2-framework. Furthermore, if additionally the initial data belong to L-1, the optimal convergence rates of the solutions in L-2-norm and convergence rates of their spatial derivatives in L-2-norm are obtained. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:5469 / 5490
页数:22
相关论文
共 43 条
[1]   A Global Existence Result for the Compressible Navier-Stokes Equations in the Critical Lp Framework [J].
Charve, Frederic ;
Danchin, Raphael .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (01) :233-271
[2]   Global existence in critical spaces for compressible Navier-Stokes equations [J].
Danchin, R .
INVENTIONES MATHEMATICAE, 2000, 141 (03) :579-614
[3]   Global existence in critical spaces for flows of compressible viscous and heat-conductive gases [J].
Danchin, R .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 160 (01) :1-39
[4]  
Danchin R., 2005, LECT NOTES, V14
[5]   DECAY-ESTIMATES FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS IN UNBOUNDED-DOMAINS [J].
DECKELNICK, K .
MATHEMATISCHE ZEITSCHRIFT, 1992, 209 (01) :115-130
[6]   Optimal convergence rates for the compressible Navier-Stokes equations with potential forces [J].
Duan, Renjun ;
Ukai, Seiji ;
Yang, Tong ;
Zhao, Huijiang .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (05) :737-758
[7]   Optimal Lp-Lq convergence rates for the compressible Navier-Stokes equations with potential force [J].
Duan, Renjun ;
Liu, Hongxia ;
Ukai, Seiji ;
Yang, Tong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 238 (01) :220-233
[8]   Global Existence and Convergence Rates for the 3-D Compressible Navier-Stokes Equations without Heat Conductivity [J].
Duan, Renjun ;
Ma, Hongfang .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (05) :2299-2319
[9]  
Evans L.C., 1998, PARTIAL DIFFERENTIAL
[10]   A blow-up criterion for compressible viscous heat-conductive flows [J].
Fan, Jishan ;
Jiang, Song ;
Ou, Yaobin .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (01) :337-350