Ca2+ and receptor-associated protein are independently required for proper folding and disulfide bond formation of the low density lipoprotein receptor-related protein

被引:40
作者
Obermoeller, LM
Chen, Z
Schwartz, AL
Bu, G
机构
[1] Washington Univ, Sch Med, Dept Pediat, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Mol Biol & Pharmacol, St Louis, MO 63110 USA
[3] Washington Univ, Sch Med, Dept Physiol & Cell Biol, St Louis, MO 63110 USA
关键词
D O I
10.1074/jbc.273.35.22374
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The low density lipoprotein receptor-related protein (LRP) is a cysteine-rich, multifunctional receptor that binds and endocytoses a diverse array of ligands. Recent studies have shown that a 39-kDa receptor-associated protein (RAP) facilitates the proper folding and subsequent trafficking of LRP within the early secretory pathway. In the current study, we have examined the potential role of Ca2+ and its relationship to RAP during LRP folding. We found that depletion of Ca2+ following either ionomycin or thapsigargin treatment significantly disrupts the folding process of LRP. The misfolded LRP molecules migrate as high molecular weight aggregates under nonreducing SDS-polyacrylamide gel electrophoresis, suggesting the formation of intermolecular disulfide bonds. This misfolding is reversible because misfolded LRP can be re-folded into functional receptor molecules upon Ca2+ restoration. Using an LRP minireceptor representing the fourth ligand binding domain of LRP, we also observed significant variation in the conformation of monomeric receptor upon Ca2+ depletion. The role of Ca2+ in LRP folding is independent from that of RAP because RAP remains bound to LRP and its minireceptor following Ca2+ depletion. Furthermore, Ca2+ depletion-induced LRP misfolding occurs in RAP-deficient cells. Taken together, these results clearly demonstrate that Ca2+ and RAP independently participate in LRP folding.
引用
收藏
页码:22374 / 22381
页数:8
相关论文
共 27 条
[1]   DISULFIDE BRIDGES OF A CYSTEINE-RICH REPEAT OF THE LDL RECEPTOR LIGAND-BINDING DOMAIN [J].
BIERI, S ;
DJORDJEVIC, JT ;
DALY, NL ;
SMITH, R ;
KROON, PA .
BIOCHEMISTRY, 1995, 34 (40) :13059-13065
[2]   Protein folding and calcium binding defects arising from familial hypercholesterolemia mutations of the LDL receptor [J].
Blacklow, SC ;
Kim, PS .
NATURE STRUCTURAL BIOLOGY, 1996, 3 (09) :758-762
[3]   ROLE OF ATP AND DISULFIDE BONDS DURING PROTEIN FOLDING IN THE ENDOPLASMIC-RETICULUM [J].
BRAAKMAN, I ;
HELENIUS, J ;
HELENIUS, A .
NATURE, 1992, 356 (6366) :260-262
[4]   MANIPULATING DISULFIDE BOND FORMATION AND PROTEIN FOLDING IN THE ENDOPLASMIC-RETICULUM [J].
BRAAKMAN, I ;
HELENIUS, J ;
HELENIUS, A .
EMBO JOURNAL, 1992, 11 (05) :1717-1722
[5]   RAP, a novel type of ER chaperone [J].
Bu, GJ ;
Schwartz, AL .
TRENDS IN CELL BIOLOGY, 1998, 8 (07) :272-276
[6]   39-KDA RECEPTOR-ASSOCIATED PROTEIN IS AN ER RESIDENT PROTEIN AND MOLECULAR CHAPERONE FOR LDL RECEPTOR-RELATED PROTEIN [J].
BU, GJ ;
GEUZE, HJ ;
STROUS, GJ ;
SCHWARTZ, AL .
EMBO JOURNAL, 1995, 14 (10) :2269-2280
[7]   Receptor-associated protein is a folding chaperone for low density lipoprotein receptor-related protein [J].
Bu, GJ ;
Rennke, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (36) :22218-22224
[8]  
BU GJ, 1993, J BIOL CHEM, V268, P13002
[9]   HIGH-EFFICIENCY TRANSFORMATION OF MAMMALIAN-CELLS BY PLASMID DNA [J].
CHEN, C ;
OKAYAMA, H .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (08) :2745-2752
[10]  
FASOLATO C, 1991, J BIOL CHEM, V266, P20159