Stability limits for three-dimensional vortex solitons in the Ginzburg-Landau equation with the cubic-quintic nonlinearity

被引:60
作者
Mihalache, D. [1 ]
Mazilu, D. [1 ]
Lederer, F. [2 ]
Leblond, H. [3 ]
Malomed, B. A. [4 ]
机构
[1] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest 077125, Romania
[2] Univ Jena, Inst Solid State Theory & Theoret Opt, D-077743 Jena, Germany
[3] Univ Angers, UMR 6136, Lab POMA, F-49000 Angers, France
[4] Tel Aviv Univ, Fac Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
来源
PHYSICAL REVIEW A | 2007年 / 76卷 / 04期
关键词
D O I
10.1103/PhysRevA.76.045803
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We complete the stability analysis for three-dimensional dissipative solitons with intrinsic vorticity S in the complex Ginzburg-Landau equation with cubic and quintic terms in its dissipative and conservative parts. It is found and qualitatively explained that a necessary stability condition for all vortex solitons, but not for the fundamental ones (S=0), is the presence of nonzero diffusivity in the transverse plane. The fundamental solitons are stable in all cases when they exist, while the vortex solitons are stable only in a part of their existence domain. However, the spectral filtering (i.e., the temporal-domain diffusivity) is not necessary for the stability of any species of dissipative solitons. In addition to the recently studied solitons with S=0,1,2, a stability region is also found for ones with S=3.
引用
收藏
页数:4
相关论文
共 35 条
[21]   EXACT-SOLUTIONS OF THE ONE-DIMENSIONAL QUINTIC COMPLEX GINZBURG-LANDAU EQUATION [J].
MARCQ, P ;
CHATE, H ;
CONTE, R .
PHYSICA D, 1994, 73 (04) :305-317
[22]   Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation [J].
Mihalache, D. ;
Mazilu, D. ;
Lederer, F. ;
Leblond, H. ;
Malomed, B. A. .
PHYSICAL REVIEW A, 2007, 75 (03)
[23]  
Mihalache D, 2006, PHYS REV LETT, V97, DOI 10.1103/PhysRevLett.97.073904
[24]   Stable spinning optical solitons in three dimensions [J].
Mihalache, D ;
Mazilu, D ;
Crasovan, LC ;
Towers, I ;
Buryak, AV ;
Malomed, BA ;
Torner, L ;
Torres, JP ;
Lederer, F .
PHYSICAL REVIEW LETTERS, 2002, 88 (07) :739021-739024
[25]  
Petviashvili V. I., 1984, Soviet Physics - Doklady, V29, P493
[26]  
PETVIASHVILI VI, 1984, DOKL AKAD NAUK SSSR+, V276, P1380
[27]  
Rosanov N. N., 2002, SPRINGER SERIES SYNE
[28]   Motion of pulses and vortices in the cubic-quintic complex Ginzburg-Landau equation without viscosity [J].
Sakaguchi, H .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 210 (1-2) :138-148
[29]   Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations [J].
Skarka, V ;
Aleksic, NB .
PHYSICAL REVIEW LETTERS, 2006, 96 (01)
[30]   Optical bullets and double bullet complexes in dissipative systems [J].
Soto-Crespo, J. M. ;
Akhmediev, Nail ;
Grelu, Ph. .
PHYSICAL REVIEW E, 2006, 74 (04)