Stability limits for three-dimensional vortex solitons in the Ginzburg-Landau equation with the cubic-quintic nonlinearity

被引:60
作者
Mihalache, D. [1 ]
Mazilu, D. [1 ]
Lederer, F. [2 ]
Leblond, H. [3 ]
Malomed, B. A. [4 ]
机构
[1] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest 077125, Romania
[2] Univ Jena, Inst Solid State Theory & Theoret Opt, D-077743 Jena, Germany
[3] Univ Angers, UMR 6136, Lab POMA, F-49000 Angers, France
[4] Tel Aviv Univ, Fac Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
来源
PHYSICAL REVIEW A | 2007年 / 76卷 / 04期
关键词
D O I
10.1103/PhysRevA.76.045803
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We complete the stability analysis for three-dimensional dissipative solitons with intrinsic vorticity S in the complex Ginzburg-Landau equation with cubic and quintic terms in its dissipative and conservative parts. It is found and qualitatively explained that a necessary stability condition for all vortex solitons, but not for the fundamental ones (S=0), is the presence of nonzero diffusivity in the transverse plane. The fundamental solitons are stable in all cases when they exist, while the vortex solitons are stable only in a part of their existence domain. However, the spectral filtering (i.e., the temporal-domain diffusivity) is not necessary for the stability of any species of dissipative solitons. In addition to the recently studied solitons with S=0,1,2, a stability region is also found for ones with S=3.
引用
收藏
页数:4
相关论文
共 35 条
[1]   Three forms of localized solutions of the quintic complex Ginzburg-Landau equation [J].
Afanasjev, VV ;
Akhmediev, N ;
SotoCrespo, JM .
PHYSICAL REVIEW E, 1996, 53 (02) :1931-1939
[2]  
Akhmediev N, 2005, LECT NOTES PHYS, V661, P1
[3]   NOVEL ARBITRARY-AMPLITUDE SOLITON-SOLUTIONS OF THE CUBIC-QUINTIC COMPLEX GINZBURG-LANDAU EQUATION [J].
AKHMEDIEV, N ;
AFANASJEV, VV .
PHYSICAL REVIEW LETTERS, 1995, 75 (12) :2320-2323
[4]   Spatiotemporal optical solitons in nonlinear dissipative media: From stationary light bullets to pulsating complexes [J].
Akhmediev, Nail ;
Soto-Crespo, J. M. ;
Grelu, Philippe .
CHAOS, 2007, 17 (03)
[5]   The world of the complex Ginzburg-Landau equation [J].
Aranson, IS ;
Kramer, L .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :99-143
[6]   Dissipative solitons and their critical slowing down near a supercritical bifurcation [J].
Bakonyi, Z ;
Michaelis, D ;
Peschel, U ;
Onishchukov, G ;
Lederer, F .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2002, 19 (03) :487-491
[7]   Cavity solitons as pixels in semiconductor microcavities [J].
Barland, S ;
Tredicce, JR ;
Brambilla, M ;
Lugiato, LA ;
Balle, S ;
Giudici, M ;
Maggipinto, T ;
Spinelli, L ;
Tissoni, G ;
Knödl, T ;
Miller, M ;
Jäger, R .
NATURE, 2002, 419 (6908) :699-702
[8]   INTERACTION OF LOCALIZED SOLUTIONS FOR SUBCRITICAL BIFURCATIONS [J].
BRAND, HR ;
DEISSLER, RJ .
PHYSICAL REVIEW LETTERS, 1989, 63 (26) :2801-2804
[9]   Stable vortex solitons in the two-dimensional Ginzburg-Landau equation [J].
Crasovan, LC ;
Malomed, BA ;
Mihalache, D .
PHYSICAL REVIEW E, 2001, 63 (01)
[10]   Erupting, flat-top, and composite spiral solitons in the two-dimensional Ginzburg-Landau equation [J].
Crasovan, LC ;
Malomed, BA ;
Mihalache, D .
PHYSICS LETTERS A, 2001, 289 (1-2) :59-65