Effects of activated carbon on liquefaction resistance of calcareous sand treated with microbially induced calcium carbonate precipitation

被引:67
作者
Shan, Yi [1 ,2 ,3 ]
Zhao, Jitong [1 ,2 ]
Tong, Huawei [1 ,2 ]
Yuan, Jie [1 ,2 ]
Lei, Donglin [1 ,2 ]
Li, Yuanyuan [1 ,2 ]
机构
[1] Guangzhou Univ, Sch Civil Engn, Guangzhou 510006, Peoples R China
[2] Guangdong Engn Res Ctr Underground Infrastructural, Guangzhou 510006, Peoples R China
[3] Univ Padua, Dept Geosci, I-35122 Padua, Italy
基金
中国国家自然科学基金;
关键词
Microbially induced calcium carbonate; precipitation treatment; Calcareous sand; Liquefaction resistance; Activated carbon; Bacterial retention test; Cyclic triaxial test; SOIL IMPROVEMENT; SHEAR MODULUS; CEMENTATION; BACTERIA; MODEL;
D O I
10.1016/j.soildyn.2022.107419
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Microbially induced calcium carbonate precipitation (MICP) is a new, natural, environmentally friendly treat-ment method for soil foundations, which can improve the resistance of calcareous sand foundations to lique-faction. Liquefaction is prone to occur under dynamic loading caused by events such as earthquakes or sea waves. Activated carbon is a porous substance that also offers the property of adsorption. In this study, the adsorption capacity of activated carbon was used to improve the retention ratio of bacteria during MICP treatment. Bacterial retention tests, cyclic triaxial (CTX) tests, and microscopic scanning tests were carried out to investigate the effects of variable activated carbon contents (namely 0%, 0.25%, 0.75%, 0.50%, 1.00%, and 1.25%, relative to the weight of the sand) on the liquefaction resistance of MICP-treated calcareous sand. The results showed that with the increasing activated carbon, the number of cycles of excess pore water pressure in the cumulative stage of the samples was increased, and the amplitude of axial strain was decreased. As the activated carbon content was increased, the bacterial retention ratio, cyclic strength, and secant modulus of the samples were found to improve considerably. On examination of microscopic scanning images, it was observed that the distribution of excessive activated carbon between the sand particles had resulted in it occupying the bacterial nucleation site and creating an obstacle to the connection between sand particles. The test using 0.75% activated carbon content best enhanced the resistance to liquefaction of calcareous sand. The outcome of this study may in the authors' view prove beneficial in improving the bacterial retention ratio and liquefaction resistance of calcareous sand when it is reinforced by microorganisms.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Microfluidic chips for microbially induced calcium carbonate precipitation: Advantages, challenges, and insights
    Wang, Yuze
    Wu, Qinghua
    Chen, Hongyu
    GEOSHANGHAI INTERNATIONAL CONFERENCE 2024, VOL 8, 2024, 1337
  • [42] Effects of Hydroxypropyl Methylcellulose (HPMC) on the Reinforcement of Sand by Microbial-Induced Calcium Carbonate Precipitation (MICP)
    Zhu, Wanyi
    Yuan, Mengnan
    He, Fanmin
    Zhao, Yang
    Xiao, Zhiyang
    Wang, Qian
    Meng, Fanyou
    Tang, Qiang
    APPLIED SCIENCES-BASEL, 2022, 12 (11):
  • [43] Cementation Stress Characteristic Curve for Sands Treated by Microbially Induced Carbonate Precipitation
    Lin, Hai
    Dong, Yi
    Park, Joon Soo
    Montoya, Brina M.
    JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2023, 149 (12)
  • [44] Reductions in Hydraulic Conductivity of Sands Caused by Microbially Induced Calcium Carbonate Precipitation
    Baek, Seung-Hun
    Kwon, Tae-Hyuk
    Dejong, Jason T.
    JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2024, 150 (02)
  • [45] Effect of different fibers on small-strain dynamic properties of microbially induced calcite precipitation-fiber combined reinforced calcareous sand
    Shan, Yi
    Liang, Junling
    Tong, Huawei
    Yuan, Jie
    Zhao, Jitong
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 322
  • [46] Toxicity effects on metal sequestration by microbially-induced carbonate precipitation
    Mugwar, Ahmed J.
    Harbottle, Michael J.
    JOURNAL OF HAZARDOUS MATERIALS, 2016, 314 : 237 - 248
  • [47] Bioremediation of lead-contaminated mine waste by Pararhodobacter sp based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand
    Mwandira, Wilson
    Nakashima, Kazunori
    Kawasaki, Satoru
    ECOLOGICAL ENGINEERING, 2017, 109 : 57 - 64
  • [48] Seawater-based bio-cementation of natural sea sand via microbially induced carbonate precipitation
    Lin, Wenbin
    Gao, Yupeng
    Lin, Wei
    Zhuo, Zulei
    Wu, Wenting
    Cheng, Xiaohui
    ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2023, 29
  • [49] Microbially Induced Carbonate Precipitation Using Microorganisms Enriched from Calcareous Materials in Marine Environments and Their Metabolites
    Kim, Yumi
    Roh, Yul
    MINERALS, 2019, 9 (12)
  • [50] Morphological Changes of Calcium Carbonate and Mechanical Properties of Samples during Microbially Induced Carbonate Precipitation (MICP)
    Gu, Zhaorui
    Chen, Qing
    Wang, Lishuang
    Niu, Shuang
    Zheng, Junjie
    Yang, Min
    Yan, Yunjun
    MATERIALS, 2022, 15 (21)