The stabilized-trigonometric scalar auxiliary variable approach for gradient flows and its efficient schemes

被引:7
作者
Yang, Junxiang [1 ]
Kim, Junseok [1 ]
机构
[1] Korea Univ, Dept Math, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
Energy stability; Gradient flows; S-TSAV approach; Stabilization technique; PHASE-FIELD MODELS; FINITE-DIFFERENCE SCHEME; NUMERICAL SCHEME; SAV APPROACH; CONVERGENCE ANALYSIS; ENERGY; 2ND-ORDER; EQUATION; SYSTEM;
D O I
10.1007/s10665-021-10155-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop a trigonometric scalar auxiliary variable (TSAV) approach for constructing linear, totally decoupled, and energy-stable numerical methods for gradient flows. An auxiliary variable r based on the trigonometric form of the nonlinear potential functional removes the bounded-from-below restriction. By adding a positive constant greater than 1, the positivity preserving property of r can be satisfied. Furthermore, the phase-field variables and auxiliary variable r can be treated in a totally decoupled manner, which simplifies the algorithm. A practical stabilization method is employed to suppress the effect of an explicit nonlinear term. Using our proposed approach, temporally first-order and second-order methods are easily constructed. We prove analytically the discrete energy dissipation laws of the first- and second-order schemes. Furthermore, we propose a multiple TSAV approach for complex systems with multiple components. A comparison of stabilized-SAV (S-SAV) and stabilized-TSAV (S-TSAV) approaches is performed to show their efficiency. Two-dimensional numerical experiments demonstrated the desired accuracy and energy stability.
引用
收藏
页数:26
相关论文
共 53 条
[1]   Multi-phase-field modeling using a conservative Allen-Cahn equation for multiphase flow [J].
Aihara, Shintaro ;
Takaki, Tomohiro ;
Takada, Naoki .
COMPUTERS & FLUIDS, 2019, 178 :141-151
[2]   A review on phase-field models of brittle fracture and a new fast hybrid formulation [J].
Ambati, Marreddy ;
Gerasimov, Tymofiy ;
De Lorenzis, Laura .
COMPUTATIONAL MECHANICS, 2015, 55 (02) :383-405
[3]   CONVERGENCE ANALYSIS OF A SECOND ORDER CONVEX SPLITTING SCHEME FOR THE MODIFIED PHASE FIELD CRYSTAL EQUATION [J].
Baskaran, A. ;
Lowengrub, J. S. ;
Wang, C. ;
Wise, S. M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (05) :2851-2873
[4]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[5]   An Energy Stable BDF2 Fourier Pseudo-Spectral Numerical Scheme for the Square Phase Field Crystal Equation [J].
Cheng, Kelong ;
Wang, Cheng ;
Wise, Steven M. .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 26 (05) :1335-1364
[6]   An energy stable fourth order finite difference scheme for the Cahn-Hilliard equation [J].
Cheng, Kelong ;
Feng, Wenqiang ;
Wang, Cheng ;
Wise, Steven M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 362 :574-595
[7]   A Second-Order, Weakly Energy-Stable Pseudo-spectral Scheme for the Cahn-Hilliard Equation and Its Solution by the Homogeneous Linear Iteration Method [J].
Cheng, Kelong ;
Wang, Cheng ;
Wise, Steven M. ;
Yue, Xingye .
JOURNAL OF SCIENTIFIC COMPUTING, 2016, 69 (03) :1083-1114
[8]   A coupled phase field framework for solving incompressible two-phase flows [J].
Chiu, Pao-Hsiung .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 392 :115-140
[9]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[10]   Stability and convergence of a second-order mixed finite element method for the Cahn-Hilliard equation [J].
Diegel, Amanda E. ;
Wang, Cheng ;
Wise, Steven M. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (04) :1867-1897