Water Quality Prediction Based on Multi-Task Learning

被引:6
作者
Wu, Huan [1 ,2 ]
Cheng, Shuiping [1 ]
Xin, Kunlun [1 ]
Ma, Nian [2 ,3 ]
Chen, Jie [2 ,4 ]
Tao, Liang [2 ]
Gao, Min [5 ]
机构
[1] Tongji Univ, Coll Environm Sci & Engn, Shanghai 200092, Peoples R China
[2] TY Lin Int Engn Consulting China Co Ltd, Chongqing 401121, Peoples R China
[3] Univ Western Cape, Fac Nat Sci, ZA-7535 Cape Town, South Africa
[4] Chongqing Univ, Coll Environm & Ecol, Chongqing 400030, Peoples R China
[5] Chongqing Univ, Sch Big Data & Software Engn, Chongqing 401331, Peoples R China
关键词
multi-task learning; water quality prediction; multiple indicator prediction; EMPIRICAL MODE DECOMPOSITION; NETWORK-BASED APPROACH; PERFORMANCE; RIVER;
D O I
10.3390/ijerph19159699
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Water pollution seriously endangers people's lives and restricts the sustainable development of the economy. Water quality prediction is essential for early warning and prevention of water pollution. However, the nonlinear characteristics of water quality data make it challenging to accurately predicted by traditional methods. Recently, the methods based on deep learning can better deal with nonlinear characteristics, which improves the prediction performance. Still, they rarely consider the relationship between multiple prediction indicators of water quality. The relationship between multiple indicators is crucial for the prediction because they can provide more associated auxiliary information. To this end, we propose a prediction method based on exploring the correlation of water quality multi-indicator prediction tasks in this paper. We explore four sharing structures for the multi-indicator prediction to train the deep neural network models for constructing the highly complex nonlinear characteristics of water quality data. Experiments on the datasets of more than 120 water quality monitoring sites in China show that the proposed models outperform the state-of-the-art baselines.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Graph-based Multi-task Learning
    Li, Ya
    Tian, Xinmei
    2015 IEEE 16TH INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY (ICCT), 2015, : 730 - 733
  • [32] Multi-Task Learning Based Network Embedding
    Wang, Shanfeng
    Wang, Qixiang
    Gong, Maoguo
    FRONTIERS IN NEUROSCIENCE, 2020, 13
  • [33] Multi-task learning based multi-energy load prediction in integrated energy system
    Lulu Wang
    Mao Tan
    Jie Chen
    Chengchen Liao
    Applied Intelligence, 2023, 53 : 10273 - 10289
  • [34] ProPept-MT: A Multi-Task Learning Model for Peptide Feature Prediction
    He, Guoqiang
    He, Qingzu
    Cheng, Jinyan
    Yu, Rongwen
    Shuai, Jianwei
    Cao, Yi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (13)
  • [35] Bayesian Multi-task Learning for Dynamic Time Series Prediction
    Chandra, Rohitash
    Cripps, Sally
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018, : 390 - 397
  • [36] Disease outbreak prediction by data integration and multi-task learning
    Bardak, Batuhan
    Tan, Mehmet
    2017 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2017, : 204 - 210
  • [37] Multi-task learning based multi-energy load prediction in integrated energy system
    Wang, Lulu
    Tan, Mao
    Chen, Jie
    Liao, Chengchen
    APPLIED INTELLIGENCE, 2023, 53 (09) : 10273 - 10289
  • [38] Traffic Prediction With Missing Data: A Multi-Task Learning Approach
    Wang, Ao
    Ye, Yongchao
    Song, Xiaozhuang
    Zhang, Shiyao
    Yu, James J. Q.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (04) : 4189 - 4202
  • [39] Automatic Facial Attractiveness Prediction by Deep Multi-Task Learning
    Gao, Lian
    Li, Weixin
    Huang, Zehua
    Huang, Di
    Wang, Yunhong
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 3592 - 3597
  • [40] Multi-task Learning for Gender and Age Prediction on Chinese Microblog
    Wang, Liang
    Li, Qi
    Chen, Xuan
    Li, Sujian
    NATURAL LANGUAGE UNDERSTANDING AND INTELLIGENT APPLICATIONS (NLPCC 2016), 2016, 10102 : 189 - 200