Water Quality Prediction Based on Multi-Task Learning

被引:6
|
作者
Wu, Huan [1 ,2 ]
Cheng, Shuiping [1 ]
Xin, Kunlun [1 ]
Ma, Nian [2 ,3 ]
Chen, Jie [2 ,4 ]
Tao, Liang [2 ]
Gao, Min [5 ]
机构
[1] Tongji Univ, Coll Environm Sci & Engn, Shanghai 200092, Peoples R China
[2] TY Lin Int Engn Consulting China Co Ltd, Chongqing 401121, Peoples R China
[3] Univ Western Cape, Fac Nat Sci, ZA-7535 Cape Town, South Africa
[4] Chongqing Univ, Coll Environm & Ecol, Chongqing 400030, Peoples R China
[5] Chongqing Univ, Sch Big Data & Software Engn, Chongqing 401331, Peoples R China
关键词
multi-task learning; water quality prediction; multiple indicator prediction; EMPIRICAL MODE DECOMPOSITION; NETWORK-BASED APPROACH; PERFORMANCE; RIVER;
D O I
10.3390/ijerph19159699
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Water pollution seriously endangers people's lives and restricts the sustainable development of the economy. Water quality prediction is essential for early warning and prevention of water pollution. However, the nonlinear characteristics of water quality data make it challenging to accurately predicted by traditional methods. Recently, the methods based on deep learning can better deal with nonlinear characteristics, which improves the prediction performance. Still, they rarely consider the relationship between multiple prediction indicators of water quality. The relationship between multiple indicators is crucial for the prediction because they can provide more associated auxiliary information. To this end, we propose a prediction method based on exploring the correlation of water quality multi-indicator prediction tasks in this paper. We explore four sharing structures for the multi-indicator prediction to train the deep neural network models for constructing the highly complex nonlinear characteristics of water quality data. Experiments on the datasets of more than 120 water quality monitoring sites in China show that the proposed models outperform the state-of-the-art baselines.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Multi-task Learning with Application to Water Quality Monitoring
    Zhou Dalin
    Yu Binfeng
    Ji Haibo
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 4696 - 4699
  • [2] A Water Quality Prediction Model Based on Multi-Task Deep Learning: A Case Study of the Yellow River, China
    Wu, Xijuan
    Zhang, Qiang
    Wen, Fei
    Qi, Ying
    WATER, 2022, 14 (21)
  • [3] Multi-task learning for pKa prediction
    Grigorios Skolidis
    Katja Hansen
    Guido Sanguinetti
    Matthias Rupp
    Journal of Computer-Aided Molecular Design, 2012, 26 : 883 - 895
  • [4] Multi-task learning for pKa prediction
    Skolidis, Grigorios
    Hansen, Katja
    Sanguinetti, Guido
    Rupp, Matthias
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2012, 26 (07) : 883 - 895
  • [5] Multi-source-Load Prediction Based on Multi-task Learning
    Yan, Zhaokang
    Cheng, Sida
    Shen, Jingwen
    Jiang, Hanyuan
    Ma, Gang
    Zou, Wenjin
    PROCEEDINGS OF 2023 INTERNATIONAL CONFERENCE ON WIRELESS POWER TRANSFER, VOL 4, ICWPT 2023, 2024, 1161 : 266 - 273
  • [6] A Multi-Task and Transfer Learning based Approach for MOS Prediction
    Tian, Xiaohai
    Fu, Kaiqi
    Gao, Shaojun
    Gu, Yiwei
    Wang, Kai
    Li, Wei
    Ma, Zejun
    INTERSPEECH 2022, 2022, : 5438 - 5442
  • [7] Deep multistage multi-task learning for quality prediction of multistage manufacturing systems
    Yan, Hao
    Sergin, Nurettin Dorukhan
    Brenneman, William A.
    Lange, Stephen Joseph
    Ba, Shan
    JOURNAL OF QUALITY TECHNOLOGY, 2021, 53 (05) : 526 - 544
  • [8] Lane-changing trajectory prediction based on multi-task learning
    Meng, Xianwei
    Tang, Jinjun
    Yang, Fang
    Wang, Zhe
    TRANSPORTATION SAFETY AND ENVIRONMENT, 2023, 5 (04)
  • [9] Wind Power Group Prediction Model Based on Multi-Task Learning
    Wang, Da
    Yang, Mao
    Zhang, Wei
    ELECTRONICS, 2023, 12 (17)
  • [10] Prediction of arterial blood pressure waveforms based on Multi-Task learning
    Ma, Gang
    Zheng, Lesong
    Zhu, Wenliang
    Xing, Xiaoman
    Wang, Lirong
    Yu, Yong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 92