Heterogeneous Sparse Matrix Computations on Hybrid GPU/CPU Platforms

被引:2
|
作者
Cardellini, Valeria [1 ]
Fanfarillo, Alessandro [1 ]
Filippone, Salvatore [2 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Ingn Civile & Ingn Informat, Rome, Italy
[2] Univ Roma Tor Vergata, Dipartimento Ingn Ind, Rome, Italy
来源
PARALLEL COMPUTING: ACCELERATING COMPUTATIONAL SCIENCE AND ENGINEERING (CSE) | 2014年 / 25卷
关键词
Sparse Matrix Computations; Design Patterns; CUDA; GPGPU;
D O I
10.3233/978-1-61499-381-0-203
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Hybrid GPU/CPU clusters are becoming very popular in the scientific computing community, as attested by the number of such systems present in the Top 500 list. In this paper, we address one of the key algorithms for scientific applications: the computation of sparse matrix-vector products that lies at the heart of iterative solvers for sparse linear systems. We detail how design patterns for sparse matrix computations enable us to easily adapt to such a heterogeneous GPU/CPU platform using several sparse matrix formats in order to achieve best performance; then, we analyze static load balancing strategies for devising a suitable data decomposition and propose our approach. We discuss our experience in using different sparse matrix formats and data partitioning algorithms with a number of computational experiments executed on three different hybrid GPU/CPU platforms.
引用
收藏
页码:203 / 212
页数:10
相关论文
共 50 条
  • [41] Parallel Implementation of Sieving Algorithm on Heterogeneous CPU-GPU Computing Architectures
    Wu, Mengsi
    Li, Pei
    Chen, Jiageng
    Yao, Shixiong
    INFORMATION SECURITY PRACTICE AND EXPERIENCE, ISPEC 2024, 2025, 15053 : 258 - 272
  • [42] Stencil computations on heterogeneous platforms for the Jacobi method: GPUs versus Cell BE
    José M. Cecilia
    José L. Abellán
    Juan Fernández
    Manuel E. Acacio
    José M. García
    Manuel Ujaldón
    The Journal of Supercomputing, 2012, 62 : 787 - 803
  • [43] A Distributed PTX Compilation and Execution System on Hybrid CPU/GPU Clusters
    Liang, Tyng-Yeu
    Li, Hung-Fu
    Chen, Bi-Shing
    INTELLIGENT SYSTEMS AND APPLICATIONS (ICS 2014), 2015, 274 : 1355 - 1364
  • [44] Optimizing tensor contraction expressions for hybrid CPU-GPU execution
    Wenjing Ma
    Sriram Krishnamoorthy
    Oreste Villa
    Karol Kowalski
    Gagan Agrawal
    Cluster Computing, 2013, 16 : 131 - 155
  • [45] Stencil computations on heterogeneous platforms for the Jacobi method: GPUs versus Cell BE
    Cecilia, Jose M.
    Abellan, Jose L.
    Fernandez, Juan
    Acacio, Manuel E.
    Garcia, Jose M.
    Ujaldon, Manuel
    JOURNAL OF SUPERCOMPUTING, 2012, 62 (02): : 787 - 803
  • [46] Optimizing tensor contraction expressions for hybrid CPU-GPU execution
    Ma, Wenjing
    Krishnamoorthy, Sriram
    Villa, Oreste
    Kowalski, Karol
    Agrawal, Gagan
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2013, 16 (01): : 131 - 155
  • [47] Using Criticality of GPU Accesses in Memory Management for CPU-GPU Heterogeneous Multi-Core Processors
    Rai, Siddharth
    Chaudhuri, Mainak
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2017, 16
  • [48] Automatic data structure selection and transformation for sparse matrix computations
    Bik, AJC
    Wijshoff, HAG
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1996, 7 (02) : 109 - 126
  • [49] GPU-In-Hadoop: Enabling MapReduce Across Distributed Heterogeneous Platforms
    Zhu, Jie
    Li, Juanjuan
    Hardesty, Erikson
    Jiang, Hai
    Li, Kuan-Ching
    2014 IEEE/ACIS 13TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS), 2014, : 315 - 320
  • [50] Improving Reliability of Soft Real-Time Embedded Systems on Integrated CPU and GPU Platforms
    Ma, Yue
    Zhou, Junlong
    Chantem, Thidapat
    Dick, Robert P.
    Wang, Shige
    Hu, Xiaobo Sharon
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2020, 39 (10) : 2218 - 2229