Heterogeneous Sparse Matrix Computations on Hybrid GPU/CPU Platforms

被引:2
|
作者
Cardellini, Valeria [1 ]
Fanfarillo, Alessandro [1 ]
Filippone, Salvatore [2 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Ingn Civile & Ingn Informat, Rome, Italy
[2] Univ Roma Tor Vergata, Dipartimento Ingn Ind, Rome, Italy
来源
PARALLEL COMPUTING: ACCELERATING COMPUTATIONAL SCIENCE AND ENGINEERING (CSE) | 2014年 / 25卷
关键词
Sparse Matrix Computations; Design Patterns; CUDA; GPGPU;
D O I
10.3233/978-1-61499-381-0-203
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Hybrid GPU/CPU clusters are becoming very popular in the scientific computing community, as attested by the number of such systems present in the Top 500 list. In this paper, we address one of the key algorithms for scientific applications: the computation of sparse matrix-vector products that lies at the heart of iterative solvers for sparse linear systems. We detail how design patterns for sparse matrix computations enable us to easily adapt to such a heterogeneous GPU/CPU platform using several sparse matrix formats in order to achieve best performance; then, we analyze static load balancing strategies for devising a suitable data decomposition and propose our approach. We discuss our experience in using different sparse matrix formats and data partitioning algorithms with a number of computational experiments executed on three different hybrid GPU/CPU platforms.
引用
收藏
页码:203 / 212
页数:10
相关论文
共 50 条
  • [31] A Distributed PTX Virtual Machine on Hybrid CPU/GPU Clusters
    Liang, Tyng-Yeu
    Li, Hung-Fu
    Lin, Yu-Jie
    Chen, Bi-Shing
    JOURNAL OF SYSTEMS ARCHITECTURE, 2016, 62 : 63 - 77
  • [32] Taking Advantage of GPU/CPU Architectures for Sparse Conjugate Gradient Solver Computation
    Kasmi, Najlae
    Zbakh, Mostapha
    Mahmoudi, Sidi Ahmed
    Manneback, Pierre
    PROCEEDINGS OF 2015 THIRD IEEE WORLD CONFERENCE ON COMPLEX SYSTEMS (WCCS), 2015,
  • [33] Hybrid CPU-GPU Distributed Framework for Large Scale Mobile Networks Simulation
    Bilel, Ben Romdhanne
    Navid, Nikaein
    Bouksiaa, Mohamed Said Mosli
    2012 IEEE/ACM 16TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED SIMULATION AND REAL TIME APPLICATIONS (DS-RT), 2012, : 44 - 53
  • [34] Approximate similarity search for online multimedia services on distributed CPU-GPU platforms
    Teodoro, George
    Valle, Eduardo
    Mariano, Nathan
    Torres, Ricardo
    Meira, Wagner, Jr.
    Saltz, Joel H.
    VLDB JOURNAL, 2014, 23 (03): : 427 - 448
  • [35] GPU Accelerated SVM with Sparse Sliced EllR-T Matrix Format
    Sopyla, Krzysztof
    Drozda, Pawel
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2015, 24 (01)
  • [36] Research of Canny Edge Detection Algorithm on Embedded CPU and GPU Heterogeneous Systems
    Huang, Yizhi
    Bai, Yang
    Li, Renfa
    Huang, Xin
    2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2016, : 647 - 651
  • [37] Asynchronous Processing for Latent Fingerprint Identification on Heterogeneous CPU-GPU Systems
    Sanchez-Fernandez, Andres J.
    Romero, Luis F.
    Peralta, Daniel
    Medina-Perez, Miguel Angel
    Saeys, Yvan
    Herrera, Francisco
    Tabik, Siham
    IEEE ACCESS, 2020, 8 (08): : 124236 - 124253
  • [38] A Study of Work Distribution and Contention in Database Primitives on Heterogeneous CPU/GPU Architectures
    Gowanlock, Michael
    Fink, Zane
    Karsin, Ben
    Wright, Jordan
    36TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2021, 2021, : 311 - 320
  • [39] XPlacer: Automatic Analysis of Data Access Patterns on Heterogeneous CPU/GPU Systems
    Pirkelbauer, Peter
    Lin, Pei-Hung
    Vanderbruggen, Tristan
    Liao, Chunhua
    2020 IEEE 34TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM IPDPS 2020, 2020, : 997 - 1007
  • [40] A Bi-objective Optimization Framework for Heterogeneous CPU/GPU Query Plans
    Przymus, Piotr
    Kaczmarski, Krzysztof
    Stencel, Krzysztof
    FUNDAMENTA INFORMATICAE, 2014, 135 (04) : 483 - 501