Video Segmentation Based on the Gaussian Mixture Updating Model

被引:0
作者
Geng, Jie [1 ]
Miao, Zhenjiang [1 ]
Liang, Qinghua [1 ]
Wang, Shu [1 ]
Wu, Hao [1 ]
机构
[1] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
来源
2015 8TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP) | 2015年
关键词
video segmentation; Gaussian mixture model; backward updating; maximin distance check; COLOR;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Video segmentation is a significant pre-process step in many video analysis systems. In consideration of many current video segmentation methods are time and memory consuming, we present an efficient method in this paper based on the Gaussian mixture model (GMM) with a backward updating model. The Gaussian mixture components produced by the current frame will be used to segment the next frame, and the segmentation result will update the position of each mixture component for the next frame. In this model, color, texture and position features are combined to describe each pixel. Experimental results show this method is fast and robust to the region occlusions.
引用
收藏
页码:52 / 56
页数:5
相关论文
共 15 条
[1]  
[Anonymous], COMP VIS PATT REC CV
[2]   Mixture of Trees Probabilistic Graphical Model for Video Segmentation [J].
Badrinarayanan, Vijay ;
Budvytis, Ignas ;
Cipolla, Roberto .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2014, 110 (01) :14-29
[3]   Modeling, clustering, and segmenting video with mixtures of dynamic textures [J].
Chan, Antoni B. ;
Vasconcelos, Nuno .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (05) :909-926
[4]   Combining Self Training and Active Learning for Video Segmentation [J].
Fathi, Alireza ;
Balcan, Maria Florina ;
Ren, Xiaofeng ;
Rehg, James M. .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2011, 2011,
[5]   Efficient graph-based image segmentation [J].
Felzenszwalb, PF ;
Huttenlocher, DP .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 59 (02) :167-181
[6]   Context-based segmentation of image sequences [J].
Goldberger, J ;
Greenspan, H .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (03) :463-468
[7]   A continuous probabilistic framework for image matching [J].
Greenspan, H ;
Goldberger, J ;
Ridel, L .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2001, 84 (03) :384-406
[8]   Efficient Hierarchical Graph-Based Video Segmentation [J].
Grundmann, Matthias ;
Kwatra, Vivek ;
Han, Mei ;
Essa, Irfan .
2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, :2141-2148
[9]  
Khan S, 2001, PROC CVPR IEEE, P746
[10]   Segmenting, modeling, and matching video clips containing multiple moving objects [J].
Rothganger, Fred ;
Lazebnik, Svetlana ;
Schmid, Cordelia ;
Ponce, Jean .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (03) :477-491