Making the most out of a hydrological model data set: Sensitivity analyses to open the model black-box

被引:54
作者
Borgonovo, E. [1 ]
Lu, X. [1 ]
Plischke, E. [2 ]
Rakovec, O. [3 ]
Hill, M. C. [4 ]
机构
[1] Bocconi Univ, Dept Decis Sci, Milan, Italy
[2] Tech Univ Clausthal, Clausthal Zellerfeld, Germany
[3] UFZ Helmholtz Ctr Environm Res, Leipzig, Germany
[4] Univ Kansas, Lawrence, KS 66045 USA
关键词
sensitivity analysis; model parameters; hydrological model; uncertainty; GLOBAL SENSITIVITY; MATHEMATICAL-MODELS; UNCERTAINTY; IDENTIFICATION; INDEXES; ROBUST; NEED;
D O I
10.1002/2017WR020767
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this work, we investigate methods for gaining greater insight from hydrological model runs conducted for uncertainty quantification and model differentiation. We frame the sensitivity analysis questions in terms of the main purposes of sensitivity analysis: parameter prioritization, trend identification, and interaction quantification. For parameter prioritization, we consider variance-based sensitivity measures, sensitivity indices based on the L-1-norm, the Kuiper metric, and the sensitivity indices of the DELSA methods. For trend identification, we investigate insights derived from graphing the one-way ANOVA sensitivity functions, the recently introduced CUSUNORO plots, and derivative scatterplots. For interaction quantification, we consider information delivered by variance-based sensitivity indices. We rely on the so-called given-data principle, in which results from a set of model runs are used to perform a defined set of analyses. One avoids using specific designs for each insight, thus controlling the computational burden. The methodology is applied to a hydrological model of a river in Belgium simulated using the well-established Framework for Understanding Structural Errors (FUSE) on five alternative configurations. The findings show that the integration of the chosen methods provides insights unavailable in most other analyses.
引用
收藏
页码:7933 / 7950
页数:18
相关论文
共 65 条
[1]   Uncertainty in Climate Change Modeling: Can Global Sensitivity Analysis Be of Help? [J].
Anderson, Barry ;
Borgonovo, Emanuele ;
Galeotti, Marzio ;
Roson, Roberto .
RISK ANALYSIS, 2014, 34 (02) :271-293
[2]  
[Anonymous], 2008, GLOBAL SENSITIVITY A
[3]  
[Anonymous], 2013, Parameter estimation and inverse problems, DOI DOI 10.1016/C2009-0-61134-X
[4]   Invariant Probabilistic Sensitivity Analysis [J].
Baucells, Manel ;
Borgonovo, Emanuele .
MANAGEMENT SCIENCE, 2013, 59 (11) :2536-2549
[5]   Functional ANOVA, ultramodularity and monotonicity: Applications in multiattribute utility theory [J].
Beccacece, F. ;
Borgonovo, E. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2011, 210 (02) :326-335
[6]  
Beven K. J., 2011, Rainfall-Runoff Modelling: The Primer
[7]   A new uncertainty importance measure [J].
Borgonovo, E. .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2007, 92 (06) :771-784
[8]   Transformations and invariance in the sensitivity analysis of computer experiments [J].
Borgonovo, E. ;
Tarantola, S. ;
Plischke, E. ;
Morris, M. D. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2014, 76 (05) :925-947
[9]   Sensitivity analysis: A review of recent advances [J].
Borgonovo, Emanuele ;
Plischke, Elmar .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 248 (03) :869-887
[10]   Inaction and climate stabilization uncertainties lead to severe economic risks [J].
Butler, Martha P. ;
Reed, Patrick M. ;
Fisher-Vanden, Karen ;
Keller, Klaus ;
Wagener, Thorsten .
CLIMATIC CHANGE, 2014, 127 (3-4) :463-474